123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798 |
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <title>JSDoc: Source: mat3.js</title>
- <script src="scripts/prettify/prettify.js"> </script>
- <script src="scripts/prettify/lang-css.js"> </script>
- <!--[if lt IE 9]>
- <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
- <![endif]-->
- <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
- <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
- </head>
- <body>
- <div id="main">
- <h1 class="page-title">Source: mat3.js</h1>
-
-
- <section>
- <article>
- <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js";
- /**
- * 3x3 Matrix
- * @module mat3
- */
- /**
- * Creates a new identity mat3
- *
- * @returns {mat3} a new 3x3 matrix
- */
- export function create() {
- let out = new glMatrix.ARRAY_TYPE(9);
- if(glMatrix.ARRAY_TYPE != Float32Array) {
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- }
- out[0] = 1;
- out[4] = 1;
- out[8] = 1;
- return out;
- }
- /**
- * Copies the upper-left 3x3 values into the given mat3.
- *
- * @param {mat3} out the receiving 3x3 matrix
- * @param {mat4} a the source 4x4 matrix
- * @returns {mat3} out
- */
- export function fromMat4(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[4];
- out[4] = a[5];
- out[5] = a[6];
- out[6] = a[8];
- out[7] = a[9];
- out[8] = a[10];
- return out;
- }
- /**
- * Creates a new mat3 initialized with values from an existing matrix
- *
- * @param {mat3} a matrix to clone
- * @returns {mat3} a new 3x3 matrix
- */
- export function clone(a) {
- let out = new glMatrix.ARRAY_TYPE(9);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- }
- /**
- * Copy the values from one mat3 to another
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- export function copy(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- }
- /**
- * Create a new mat3 with the given values
- *
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m02 Component in column 0, row 2 position (index 2)
- * @param {Number} m10 Component in column 1, row 0 position (index 3)
- * @param {Number} m11 Component in column 1, row 1 position (index 4)
- * @param {Number} m12 Component in column 1, row 2 position (index 5)
- * @param {Number} m20 Component in column 2, row 0 position (index 6)
- * @param {Number} m21 Component in column 2, row 1 position (index 7)
- * @param {Number} m22 Component in column 2, row 2 position (index 8)
- * @returns {mat3} A new mat3
- */
- export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
- let out = new glMatrix.ARRAY_TYPE(9);
- out[0] = m00;
- out[1] = m01;
- out[2] = m02;
- out[3] = m10;
- out[4] = m11;
- out[5] = m12;
- out[6] = m20;
- out[7] = m21;
- out[8] = m22;
- return out;
- }
- /**
- * Set the components of a mat3 to the given values
- *
- * @param {mat3} out the receiving matrix
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m02 Component in column 0, row 2 position (index 2)
- * @param {Number} m10 Component in column 1, row 0 position (index 3)
- * @param {Number} m11 Component in column 1, row 1 position (index 4)
- * @param {Number} m12 Component in column 1, row 2 position (index 5)
- * @param {Number} m20 Component in column 2, row 0 position (index 6)
- * @param {Number} m21 Component in column 2, row 1 position (index 7)
- * @param {Number} m22 Component in column 2, row 2 position (index 8)
- * @returns {mat3} out
- */
- export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
- out[0] = m00;
- out[1] = m01;
- out[2] = m02;
- out[3] = m10;
- out[4] = m11;
- out[5] = m12;
- out[6] = m20;
- out[7] = m21;
- out[8] = m22;
- return out;
- }
- /**
- * Set a mat3 to the identity matrix
- *
- * @param {mat3} out the receiving matrix
- * @returns {mat3} out
- */
- export function identity(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- /**
- * Transpose the values of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- export function transpose(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- let a01 = a[1], a02 = a[2], a12 = a[5];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a01;
- out[5] = a[7];
- out[6] = a02;
- out[7] = a12;
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
- return out;
- }
- /**
- * Inverts a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- export function invert(out, a) {
- let a00 = a[0], a01 = a[1], a02 = a[2];
- let a10 = a[3], a11 = a[4], a12 = a[5];
- let a20 = a[6], a21 = a[7], a22 = a[8];
- let b01 = a22 * a11 - a12 * a21;
- let b11 = -a22 * a10 + a12 * a20;
- let b21 = a21 * a10 - a11 * a20;
- // Calculate the determinant
- let det = a00 * b01 + a01 * b11 + a02 * b21;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = b01 * det;
- out[1] = (-a22 * a01 + a02 * a21) * det;
- out[2] = (a12 * a01 - a02 * a11) * det;
- out[3] = b11 * det;
- out[4] = (a22 * a00 - a02 * a20) * det;
- out[5] = (-a12 * a00 + a02 * a10) * det;
- out[6] = b21 * det;
- out[7] = (-a21 * a00 + a01 * a20) * det;
- out[8] = (a11 * a00 - a01 * a10) * det;
- return out;
- }
- /**
- * Calculates the adjugate of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- export function adjoint(out, a) {
- let a00 = a[0], a01 = a[1], a02 = a[2];
- let a10 = a[3], a11 = a[4], a12 = a[5];
- let a20 = a[6], a21 = a[7], a22 = a[8];
- out[0] = (a11 * a22 - a12 * a21);
- out[1] = (a02 * a21 - a01 * a22);
- out[2] = (a01 * a12 - a02 * a11);
- out[3] = (a12 * a20 - a10 * a22);
- out[4] = (a00 * a22 - a02 * a20);
- out[5] = (a02 * a10 - a00 * a12);
- out[6] = (a10 * a21 - a11 * a20);
- out[7] = (a01 * a20 - a00 * a21);
- out[8] = (a00 * a11 - a01 * a10);
- return out;
- }
- /**
- * Calculates the determinant of a mat3
- *
- * @param {mat3} a the source matrix
- * @returns {Number} determinant of a
- */
- export function determinant(a) {
- let a00 = a[0], a01 = a[1], a02 = a[2];
- let a10 = a[3], a11 = a[4], a12 = a[5];
- let a20 = a[6], a21 = a[7], a22 = a[8];
- return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
- }
- /**
- * Multiplies two mat3's
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
- export function multiply(out, a, b) {
- let a00 = a[0], a01 = a[1], a02 = a[2];
- let a10 = a[3], a11 = a[4], a12 = a[5];
- let a20 = a[6], a21 = a[7], a22 = a[8];
- let b00 = b[0], b01 = b[1], b02 = b[2];
- let b10 = b[3], b11 = b[4], b12 = b[5];
- let b20 = b[6], b21 = b[7], b22 = b[8];
- out[0] = b00 * a00 + b01 * a10 + b02 * a20;
- out[1] = b00 * a01 + b01 * a11 + b02 * a21;
- out[2] = b00 * a02 + b01 * a12 + b02 * a22;
- out[3] = b10 * a00 + b11 * a10 + b12 * a20;
- out[4] = b10 * a01 + b11 * a11 + b12 * a21;
- out[5] = b10 * a02 + b11 * a12 + b12 * a22;
- out[6] = b20 * a00 + b21 * a10 + b22 * a20;
- out[7] = b20 * a01 + b21 * a11 + b22 * a21;
- out[8] = b20 * a02 + b21 * a12 + b22 * a22;
- return out;
- }
- /**
- * Translate a mat3 by the given vector
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to translate
- * @param {vec2} v vector to translate by
- * @returns {mat3} out
- */
- export function translate(out, a, v) {
- let a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- x = v[0], y = v[1];
- out[0] = a00;
- out[1] = a01;
- out[2] = a02;
- out[3] = a10;
- out[4] = a11;
- out[5] = a12;
- out[6] = x * a00 + y * a10 + a20;
- out[7] = x * a01 + y * a11 + a21;
- out[8] = x * a02 + y * a12 + a22;
- return out;
- }
- /**
- * Rotates a mat3 by the given angle
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
- export function rotate(out, a, rad) {
- let a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = c * a00 + s * a10;
- out[1] = c * a01 + s * a11;
- out[2] = c * a02 + s * a12;
- out[3] = c * a10 - s * a00;
- out[4] = c * a11 - s * a01;
- out[5] = c * a12 - s * a02;
- out[6] = a20;
- out[7] = a21;
- out[8] = a22;
- return out;
- };
- /**
- * Scales the mat3 by the dimensions in the given vec2
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat3} out
- **/
- export function scale(out, a, v) {
- let x = v[0], y = v[1];
- out[0] = x * a[0];
- out[1] = x * a[1];
- out[2] = x * a[2];
- out[3] = y * a[3];
- out[4] = y * a[4];
- out[5] = y * a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- }
- /**
- * Creates a matrix from a vector translation
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.translate(dest, dest, vec);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {vec2} v Translation vector
- * @returns {mat3} out
- */
- export function fromTranslation(out, v) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = v[0];
- out[7] = v[1];
- out[8] = 1;
- return out;
- }
- /**
- * Creates a matrix from a given angle
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.rotate(dest, dest, rad);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
- export function fromRotation(out, rad) {
- let s = Math.sin(rad), c = Math.cos(rad);
- out[0] = c;
- out[1] = s;
- out[2] = 0;
- out[3] = -s;
- out[4] = c;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.scale(dest, dest, vec);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {vec2} v Scaling vector
- * @returns {mat3} out
- */
- export function fromScaling(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = v[1];
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- /**
- * Copies the values from a mat2d into a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat2d} a the matrix to copy
- * @returns {mat3} out
- **/
- export function fromMat2d(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = 0;
- out[3] = a[2];
- out[4] = a[3];
- out[5] = 0;
- out[6] = a[4];
- out[7] = a[5];
- out[8] = 1;
- return out;
- }
- /**
- * Calculates a 3x3 matrix from the given quaternion
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {quat} q Quaternion to create matrix from
- *
- * @returns {mat3} out
- */
- export function fromQuat(out, q) {
- let x = q[0], y = q[1], z = q[2], w = q[3];
- let x2 = x + x;
- let y2 = y + y;
- let z2 = z + z;
- let xx = x * x2;
- let yx = y * x2;
- let yy = y * y2;
- let zx = z * x2;
- let zy = z * y2;
- let zz = z * z2;
- let wx = w * x2;
- let wy = w * y2;
- let wz = w * z2;
- out[0] = 1 - yy - zz;
- out[3] = yx - wz;
- out[6] = zx + wy;
- out[1] = yx + wz;
- out[4] = 1 - xx - zz;
- out[7] = zy - wx;
- out[2] = zx - wy;
- out[5] = zy + wx;
- out[8] = 1 - xx - yy;
- return out;
- }
- /**
- * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {mat4} a Mat4 to derive the normal matrix from
- *
- * @returns {mat3} out
- */
- export function normalFromMat4(out, a) {
- let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- let b00 = a00 * a11 - a01 * a10;
- let b01 = a00 * a12 - a02 * a10;
- let b02 = a00 * a13 - a03 * a10;
- let b03 = a01 * a12 - a02 * a11;
- let b04 = a01 * a13 - a03 * a11;
- let b05 = a02 * a13 - a03 * a12;
- let b06 = a20 * a31 - a21 * a30;
- let b07 = a20 * a32 - a22 * a30;
- let b08 = a20 * a33 - a23 * a30;
- let b09 = a21 * a32 - a22 * a31;
- let b10 = a21 * a33 - a23 * a31;
- let b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- return out;
- }
- /**
- * Generates a 2D projection matrix with the given bounds
- *
- * @param {mat3} out mat3 frustum matrix will be written into
- * @param {number} width Width of your gl context
- * @param {number} height Height of gl context
- * @returns {mat3} out
- */
- export function projection(out, width, height) {
- out[0] = 2 / width;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = -2 / height;
- out[5] = 0;
- out[6] = -1;
- out[7] = 1;
- out[8] = 1;
- return out;
- }
- /**
- * Returns a string representation of a mat3
- *
- * @param {mat3} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- export function str(a) {
- return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
- a[6] + ', ' + a[7] + ', ' + a[8] + ')';
- }
- /**
- * Returns Frobenius norm of a mat3
- *
- * @param {mat3} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- export function frob(a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
- }
- /**
- * Adds two mat3's
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
- export function add(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- out[4] = a[4] + b[4];
- out[5] = a[5] + b[5];
- out[6] = a[6] + b[6];
- out[7] = a[7] + b[7];
- out[8] = a[8] + b[8];
- return out;
- }
- /**
- * Subtracts matrix b from matrix a
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
- export function subtract(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- out[4] = a[4] - b[4];
- out[5] = a[5] - b[5];
- out[6] = a[6] - b[6];
- out[7] = a[7] - b[7];
- out[8] = a[8] - b[8];
- return out;
- }
- /**
- * Multiply each element of the matrix by a scalar.
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to scale
- * @param {Number} b amount to scale the matrix's elements by
- * @returns {mat3} out
- */
- export function multiplyScalar(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- out[4] = a[4] * b;
- out[5] = a[5] * b;
- out[6] = a[6] * b;
- out[7] = a[7] * b;
- out[8] = a[8] * b;
- return out;
- }
- /**
- * Adds two mat3's after multiplying each element of the second operand by a scalar value.
- *
- * @param {mat3} out the receiving vector
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @param {Number} scale the amount to scale b's elements by before adding
- * @returns {mat3} out
- */
- export function multiplyScalarAndAdd(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- out[3] = a[3] + (b[3] * scale);
- out[4] = a[4] + (b[4] * scale);
- out[5] = a[5] + (b[5] * scale);
- out[6] = a[6] + (b[6] * scale);
- out[7] = a[7] + (b[7] * scale);
- out[8] = a[8] + (b[8] * scale);
- return out;
- }
- /**
- * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
- *
- * @param {mat3} a The first matrix.
- * @param {mat3} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- export function exactEquals(a, b) {
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] &&
- a[3] === b[3] && a[4] === b[4] && a[5] === b[5] &&
- a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
- }
- /**
- * Returns whether or not the matrices have approximately the same elements in the same position.
- *
- * @param {mat3} a The first matrix.
- * @param {mat3} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- export function equals(a, b) {
- let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8];
- let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8];
- return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
- Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
- Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
- Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
- Math.abs(a4 - b4) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
- Math.abs(a5 - b5) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
- Math.abs(a6 - b6) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
- Math.abs(a7 - b7) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a7), Math.abs(b7)) &&
- Math.abs(a8 - b8) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a8), Math.abs(b8)));
- }
- /**
- * Alias for {@link mat3.multiply}
- * @function
- */
- export const mul = multiply;
- /**
- * Alias for {@link mat3.subtract}
- * @function
- */
- export const sub = subtract;
- </code></pre>
- </article>
- </section>
- </div>
- <nav>
- <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul>
- </nav>
- <br class="clear">
- <footer>
- Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)
- </footer>
- <script> prettyPrint(); </script>
- <script src="scripts/linenumber.js"> </script>
- </body>
- </html>
|