123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820 |
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <title>JSDoc: Source: vec3.js</title>
- <script src="scripts/prettify/prettify.js"> </script>
- <script src="scripts/prettify/lang-css.js"> </script>
- <!--[if lt IE 9]>
- <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
- <![endif]-->
- <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
- <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
- </head>
- <body>
- <div id="main">
- <h1 class="page-title">Source: vec3.js</h1>
-
-
- <section>
- <article>
- <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js";
- /**
- * 3 Dimensional Vector
- * @module vec3
- */
- /**
- * Creates a new, empty vec3
- *
- * @returns {vec3} a new 3D vector
- */
- export function create() {
- let out = new glMatrix.ARRAY_TYPE(3);
- if(glMatrix.ARRAY_TYPE != Float32Array) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- }
- return out;
- }
- /**
- * Creates a new vec3 initialized with values from an existing vector
- *
- * @param {vec3} a vector to clone
- * @returns {vec3} a new 3D vector
- */
- export function clone(a) {
- var out = new glMatrix.ARRAY_TYPE(3);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- /**
- * Calculates the length of a vec3
- *
- * @param {vec3} a vector to calculate length of
- * @returns {Number} length of a
- */
- export function length(a) {
- let x = a[0];
- let y = a[1];
- let z = a[2];
- return Math.sqrt(x*x + y*y + z*z);
- }
- /**
- * Creates a new vec3 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} a new 3D vector
- */
- export function fromValues(x, y, z) {
- let out = new glMatrix.ARRAY_TYPE(3);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- /**
- * Copy the values from one vec3 to another
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the source vector
- * @returns {vec3} out
- */
- export function copy(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- }
- /**
- * Set the components of a vec3 to the given values
- *
- * @param {vec3} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} out
- */
- export function set(out, x, y, z) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- }
- /**
- * Adds two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function add(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
- }
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function subtract(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
- }
- /**
- * Multiplies two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function multiply(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- return out;
- }
- /**
- * Divides two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function divide(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- return out;
- }
- /**
- * Math.ceil the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to ceil
- * @returns {vec3} out
- */
- export function ceil(out, a) {
- out[0] = Math.ceil(a[0]);
- out[1] = Math.ceil(a[1]);
- out[2] = Math.ceil(a[2]);
- return out;
- }
- /**
- * Math.floor the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to floor
- * @returns {vec3} out
- */
- export function floor(out, a) {
- out[0] = Math.floor(a[0]);
- out[1] = Math.floor(a[1]);
- out[2] = Math.floor(a[2]);
- return out;
- }
- /**
- * Returns the minimum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function min(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- return out;
- }
- /**
- * Returns the maximum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function max(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- return out;
- }
- /**
- * Math.round the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to round
- * @returns {vec3} out
- */
- export function round(out, a) {
- out[0] = Math.round(a[0]);
- out[1] = Math.round(a[1]);
- out[2] = Math.round(a[2]);
- return out;
- }
- /**
- * Scales a vec3 by a scalar number
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec3} out
- */
- export function scale(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
- }
- /**
- * Adds two vec3's after scaling the second operand by a scalar value
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec3} out
- */
- export function scaleAndAdd(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- return out;
- }
- /**
- * Calculates the euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} distance between a and b
- */
- export function distance(a, b) {
- let x = b[0] - a[0];
- let y = b[1] - a[1];
- let z = b[2] - a[2];
- return Math.sqrt(x*x + y*y + z*z);
- }
- /**
- * Calculates the squared euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} squared distance between a and b
- */
- export function squaredDistance(a, b) {
- let x = b[0] - a[0];
- let y = b[1] - a[1];
- let z = b[2] - a[2];
- return x*x + y*y + z*z;
- }
- /**
- * Calculates the squared length of a vec3
- *
- * @param {vec3} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- export function squaredLength(a) {
- let x = a[0];
- let y = a[1];
- let z = a[2];
- return x*x + y*y + z*z;
- }
- /**
- * Negates the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to negate
- * @returns {vec3} out
- */
- export function negate(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- return out;
- }
- /**
- * Returns the inverse of the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to invert
- * @returns {vec3} out
- */
- export function inverse(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- return out;
- }
- /**
- * Normalize a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to normalize
- * @returns {vec3} out
- */
- export function normalize(out, a) {
- let x = a[0];
- let y = a[1];
- let z = a[2];
- let len = x*x + y*y + z*z;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
- }
- /**
- * Calculates the dot product of two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} dot product of a and b
- */
- export function dot(a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- }
- /**
- * Computes the cross product of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- export function cross(out, a, b) {
- let ax = a[0], ay = a[1], az = a[2];
- let bx = b[0], by = b[1], bz = b[2];
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
- }
- /**
- * Performs a linear interpolation between two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {vec3} out
- */
- export function lerp(out, a, b, t) {
- let ax = a[0];
- let ay = a[1];
- let az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
- }
- /**
- * Performs a hermite interpolation with two control points
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {vec3} c the third operand
- * @param {vec3} d the fourth operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {vec3} out
- */
- export function hermite(out, a, b, c, d, t) {
- let factorTimes2 = t * t;
- let factor1 = factorTimes2 * (2 * t - 3) + 1;
- let factor2 = factorTimes2 * (t - 2) + t;
- let factor3 = factorTimes2 * (t - 1);
- let factor4 = factorTimes2 * (3 - 2 * t);
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- }
- /**
- * Performs a bezier interpolation with two control points
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {vec3} c the third operand
- * @param {vec3} d the fourth operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {vec3} out
- */
- export function bezier(out, a, b, c, d, t) {
- let inverseFactor = 1 - t;
- let inverseFactorTimesTwo = inverseFactor * inverseFactor;
- let factorTimes2 = t * t;
- let factor1 = inverseFactorTimesTwo * inverseFactor;
- let factor2 = 3 * t * inverseFactorTimesTwo;
- let factor3 = 3 * factorTimes2 * inverseFactor;
- let factor4 = factorTimes2 * t;
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- }
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec3} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec3} out
- */
- export function random(out, scale) {
- scale = scale || 1.0;
- let r = glMatrix.RANDOM() * 2.0 * Math.PI;
- let z = (glMatrix.RANDOM() * 2.0) - 1.0;
- let zScale = Math.sqrt(1.0-z*z) * scale;
- out[0] = Math.cos(r) * zScale;
- out[1] = Math.sin(r) * zScale;
- out[2] = z * scale;
- return out;
- }
- /**
- * Transforms the vec3 with a mat4.
- * 4th vector component is implicitly '1'
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec3} out
- */
- export function transformMat4(out, a, m) {
- let x = a[0], y = a[1], z = a[2];
- let w = m[3] * x + m[7] * y + m[11] * z + m[15];
- w = w || 1.0;
- out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
- out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
- out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
- return out;
- }
- /**
- * Transforms the vec3 with a mat3.
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat3} m the 3x3 matrix to transform with
- * @returns {vec3} out
- */
- export function transformMat3(out, a, m) {
- let x = a[0], y = a[1], z = a[2];
- out[0] = x * m[0] + y * m[3] + z * m[6];
- out[1] = x * m[1] + y * m[4] + z * m[7];
- out[2] = x * m[2] + y * m[5] + z * m[8];
- return out;
- }
- /**
- * Transforms the vec3 with a quat
- * Can also be used for dual quaternions. (Multiply it with the real part)
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec3} out
- */
- export function transformQuat(out, a, q) {
- // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
- let qx = q[0], qy = q[1], qz = q[2], qw = q[3];
- let x = a[0], y = a[1], z = a[2];
- // var qvec = [qx, qy, qz];
- // var uv = vec3.cross([], qvec, a);
- let uvx = qy * z - qz * y,
- uvy = qz * x - qx * z,
- uvz = qx * y - qy * x;
- // var uuv = vec3.cross([], qvec, uv);
- let uuvx = qy * uvz - qz * uvy,
- uuvy = qz * uvx - qx * uvz,
- uuvz = qx * uvy - qy * uvx;
- // vec3.scale(uv, uv, 2 * w);
- let w2 = qw * 2;
- uvx *= w2;
- uvy *= w2;
- uvz *= w2;
- // vec3.scale(uuv, uuv, 2);
- uuvx *= 2;
- uuvy *= 2;
- uuvz *= 2;
- // return vec3.add(out, a, vec3.add(out, uv, uuv));
- out[0] = x + uvx + uuvx;
- out[1] = y + uvy + uuvy;
- out[2] = z + uvz + uuvz;
- return out;
- }
- /**
- * Rotate a 3D vector around the x-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- export function rotateX(out, a, b, c){
- let p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0];
- r[1] = p[1]*Math.cos(c) - p[2]*Math.sin(c);
- r[2] = p[1]*Math.sin(c) + p[2]*Math.cos(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- }
- /**
- * Rotate a 3D vector around the y-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- export function rotateY(out, a, b, c){
- let p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[2]*Math.sin(c) + p[0]*Math.cos(c);
- r[1] = p[1];
- r[2] = p[2]*Math.cos(c) - p[0]*Math.sin(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- }
- /**
- * Rotate a 3D vector around the z-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- export function rotateZ(out, a, b, c){
- let p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0]*Math.cos(c) - p[1]*Math.sin(c);
- r[1] = p[0]*Math.sin(c) + p[1]*Math.cos(c);
- r[2] = p[2];
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- }
- /**
- * Get the angle between two 3D vectors
- * @param {vec3} a The first operand
- * @param {vec3} b The second operand
- * @returns {Number} The angle in radians
- */
- export function angle(a, b) {
- let tempA = fromValues(a[0], a[1], a[2]);
- let tempB = fromValues(b[0], b[1], b[2]);
- normalize(tempA, tempA);
- normalize(tempB, tempB);
- let cosine = dot(tempA, tempB);
- if(cosine > 1.0) {
- return 0;
- }
- else if(cosine < -1.0) {
- return Math.PI;
- } else {
- return Math.acos(cosine);
- }
- }
- /**
- * Returns a string representation of a vector
- *
- * @param {vec3} a vector to represent as a string
- * @returns {String} string representation of the vector
- */
- export function str(a) {
- return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
- }
- /**
- * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
- *
- * @param {vec3} a The first vector.
- * @param {vec3} b The second vector.
- * @returns {Boolean} True if the vectors are equal, false otherwise.
- */
- export function exactEquals(a, b) {
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
- }
- /**
- * Returns whether or not the vectors have approximately the same elements in the same position.
- *
- * @param {vec3} a The first vector.
- * @param {vec3} b The second vector.
- * @returns {Boolean} True if the vectors are equal, false otherwise.
- */
- export function equals(a, b) {
- let a0 = a[0], a1 = a[1], a2 = a[2];
- let b0 = b[0], b1 = b[1], b2 = b[2];
- return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
- Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
- Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)));
- }
- /**
- * Alias for {@link vec3.subtract}
- * @function
- */
- export const sub = subtract;
- /**
- * Alias for {@link vec3.multiply}
- * @function
- */
- export const mul = multiply;
- /**
- * Alias for {@link vec3.divide}
- * @function
- */
- export const div = divide;
- /**
- * Alias for {@link vec3.distance}
- * @function
- */
- export const dist = distance;
- /**
- * Alias for {@link vec3.squaredDistance}
- * @function
- */
- export const sqrDist = squaredDistance;
- /**
- * Alias for {@link vec3.length}
- * @function
- */
- export const len = length;
- /**
- * Alias for {@link vec3.squaredLength}
- * @function
- */
- export const sqrLen = squaredLength;
- /**
- * Perform some operation over an array of vec3s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- export const forEach = (function() {
- let vec = create();
- return function(a, stride, offset, count, fn, arg) {
- let i, l;
- if(!stride) {
- stride = 3;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
- }
- return a;
- };
- })();
- </code></pre>
- </article>
- </section>
- </div>
- <nav>
- <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul>
- </nav>
- <br class="clear">
- <footer>
- Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)
- </footer>
- <script> prettyPrint(); </script>
- <script src="scripts/linenumber.js"> </script>
- </body>
- </html>
|