| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 | <!DOCTYPE html><html lang="en"><head>    <meta charset="utf-8">    <title>JSDoc: Source: quat.js</title>    <script src="scripts/prettify/prettify.js"> </script>    <script src="scripts/prettify/lang-css.js"> </script>    <!--[if lt IE 9]>      <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>    <![endif]-->    <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">    <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css"></head><body><div id="main">    <h1 class="page-title">Source: quat.js</h1>            <section>        <article>            <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"import * as mat3 from "./mat3.js"import * as vec3 from "./vec3.js"import * as vec4 from "./vec4.js"/** * Quaternion * @module quat *//** * Creates a new identity quat * * @returns {quat} a new quaternion */export function create() {  let out = new glMatrix.ARRAY_TYPE(4);  if(glMatrix.ARRAY_TYPE != Float32Array) {    out[0] = 0;    out[1] = 0;    out[2] = 0;  }  out[3] = 1;  return out;}/** * Set a quat to the identity quaternion * * @param {quat} out the receiving quaternion * @returns {quat} out */export function identity(out) {  out[0] = 0;  out[1] = 0;  out[2] = 0;  out[3] = 1;  return out;}/** * Sets a quat from the given angle and rotation axis, * then returns it. * * @param {quat} out the receiving quaternion * @param {vec3} axis the axis around which to rotate * @param {Number} rad the angle in radians * @returns {quat} out **/export function setAxisAngle(out, axis, rad) {  rad = rad * 0.5;  let s = Math.sin(rad);  out[0] = s * axis[0];  out[1] = s * axis[1];  out[2] = s * axis[2];  out[3] = Math.cos(rad);  return out;}/** * Gets the rotation axis and angle for a given *  quaternion. If a quaternion is created with *  setAxisAngle, this method will return the same *  values as providied in the original parameter list *  OR functionally equivalent values. * Example: The quaternion formed by axis [0, 0, 1] and *  angle -90 is the same as the quaternion formed by *  [0, 0, 1] and 270. This method favors the latter. * @param  {vec3} out_axis  Vector receiving the axis of rotation * @param  {quat} q     Quaternion to be decomposed * @return {Number}     Angle, in radians, of the rotation */export function getAxisAngle(out_axis, q) {  let rad = Math.acos(q[3]) * 2.0;  let s = Math.sin(rad / 2.0);  if (s > glMatrix.EPSILON) {    out_axis[0] = q[0] / s;    out_axis[1] = q[1] / s;    out_axis[2] = q[2] / s;  } else {    // If s is zero, return any axis (no rotation - axis does not matter)    out_axis[0] = 1;    out_axis[1] = 0;    out_axis[2] = 0;  }  return rad;}/** * Multiplies two quat's * * @param {quat} out the receiving quaternion * @param {quat} a the first operand * @param {quat} b the second operand * @returns {quat} out */export function multiply(out, a, b) {  let ax = a[0], ay = a[1], az = a[2], aw = a[3];  let bx = b[0], by = b[1], bz = b[2], bw = b[3];  out[0] = ax * bw + aw * bx + ay * bz - az * by;  out[1] = ay * bw + aw * by + az * bx - ax * bz;  out[2] = az * bw + aw * bz + ax * by - ay * bx;  out[3] = aw * bw - ax * bx - ay * by - az * bz;  return out;}/** * Rotates a quaternion by the given angle about the X axis * * @param {quat} out quat receiving operation result * @param {quat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */export function rotateX(out, a, rad) {  rad *= 0.5;  let ax = a[0], ay = a[1], az = a[2], aw = a[3];  let bx = Math.sin(rad), bw = Math.cos(rad);  out[0] = ax * bw + aw * bx;  out[1] = ay * bw + az * bx;  out[2] = az * bw - ay * bx;  out[3] = aw * bw - ax * bx;  return out;}/** * Rotates a quaternion by the given angle about the Y axis * * @param {quat} out quat receiving operation result * @param {quat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */export function rotateY(out, a, rad) {  rad *= 0.5;  let ax = a[0], ay = a[1], az = a[2], aw = a[3];  let by = Math.sin(rad), bw = Math.cos(rad);  out[0] = ax * bw - az * by;  out[1] = ay * bw + aw * by;  out[2] = az * bw + ax * by;  out[3] = aw * bw - ay * by;  return out;}/** * Rotates a quaternion by the given angle about the Z axis * * @param {quat} out quat receiving operation result * @param {quat} a quat to rotate * @param {number} rad angle (in radians) to rotate * @returns {quat} out */export function rotateZ(out, a, rad) {  rad *= 0.5;  let ax = a[0], ay = a[1], az = a[2], aw = a[3];  let bz = Math.sin(rad), bw = Math.cos(rad);  out[0] = ax * bw + ay * bz;  out[1] = ay * bw - ax * bz;  out[2] = az * bw + aw * bz;  out[3] = aw * bw - az * bz;  return out;}/** * Calculates the W component of a quat from the X, Y, and Z components. * Assumes that quaternion is 1 unit in length. * Any existing W component will be ignored. * * @param {quat} out the receiving quaternion * @param {quat} a quat to calculate W component of * @returns {quat} out */export function calculateW(out, a) {  let x = a[0], y = a[1], z = a[2];  out[0] = x;  out[1] = y;  out[2] = z;  out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));  return out;}/** * Performs a spherical linear interpolation between two quat * * @param {quat} out the receiving quaternion * @param {quat} a the first operand * @param {quat} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {quat} out */export function slerp(out, a, b, t) {  // benchmarks:  //    http://jsperf.com/quaternion-slerp-implementations  let ax = a[0], ay = a[1], az = a[2], aw = a[3];  let bx = b[0], by = b[1], bz = b[2], bw = b[3];  let omega, cosom, sinom, scale0, scale1;  // calc cosine  cosom = ax * bx + ay * by + az * bz + aw * bw;  // adjust signs (if necessary)  if ( cosom < 0.0 ) {    cosom = -cosom;    bx = - bx;    by = - by;    bz = - bz;    bw = - bw;  }  // calculate coefficients  if ( (1.0 - cosom) > glMatrix.EPSILON ) {    // standard case (slerp)    omega  = Math.acos(cosom);    sinom  = Math.sin(omega);    scale0 = Math.sin((1.0 - t) * omega) / sinom;    scale1 = Math.sin(t * omega) / sinom;  } else {    // "from" and "to" quaternions are very close    //  ... so we can do a linear interpolation    scale0 = 1.0 - t;    scale1 = t;  }  // calculate final values  out[0] = scale0 * ax + scale1 * bx;  out[1] = scale0 * ay + scale1 * by;  out[2] = scale0 * az + scale1 * bz;  out[3] = scale0 * aw + scale1 * bw;  return out;}/** * Generates a random quaternion * * @param {quat} out the receiving quaternion * @returns {quat} out */export function random(out) {  // Implementation of http://planning.cs.uiuc.edu/node198.html  // TODO: Calling random 3 times is probably not the fastest solution  let u1 = glMatrix.RANDOM();  let u2 = glMatrix.RANDOM();  let u3 = glMatrix.RANDOM();  let sqrt1MinusU1 = Math.sqrt(1 - u1);  let sqrtU1 = Math.sqrt(u1);  out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);  out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);  out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);  out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);  return out;}/** * Calculates the inverse of a quat * * @param {quat} out the receiving quaternion * @param {quat} a quat to calculate inverse of * @returns {quat} out */export function invert(out, a) {  let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];  let dot = a0*a0 + a1*a1 + a2*a2 + a3*a3;  let invDot = dot ? 1.0/dot : 0;  // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0  out[0] = -a0*invDot;  out[1] = -a1*invDot;  out[2] = -a2*invDot;  out[3] = a3*invDot;  return out;}/** * Calculates the conjugate of a quat * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. * * @param {quat} out the receiving quaternion * @param {quat} a quat to calculate conjugate of * @returns {quat} out */export function conjugate(out, a) {  out[0] = -a[0];  out[1] = -a[1];  out[2] = -a[2];  out[3] = a[3];  return out;}/** * Creates a quaternion from the given 3x3 rotation matrix. * * NOTE: The resultant quaternion is not normalized, so you should be sure * to renormalize the quaternion yourself where necessary. * * @param {quat} out the receiving quaternion * @param {mat3} m rotation matrix * @returns {quat} out * @function */export function fromMat3(out, m) {  // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes  // article "Quaternion Calculus and Fast Animation".  let fTrace = m[0] + m[4] + m[8];  let fRoot;  if ( fTrace > 0.0 ) {    // |w| > 1/2, may as well choose w > 1/2    fRoot = Math.sqrt(fTrace + 1.0);  // 2w    out[3] = 0.5 * fRoot;    fRoot = 0.5/fRoot;  // 1/(4w)    out[0] = (m[5]-m[7])*fRoot;    out[1] = (m[6]-m[2])*fRoot;    out[2] = (m[1]-m[3])*fRoot;  } else {    // |w| <= 1/2    let i = 0;    if ( m[4] > m[0] )      i = 1;    if ( m[8] > m[i*3+i] )      i = 2;    let j = (i+1)%3;    let k = (i+2)%3;    fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);    out[i] = 0.5 * fRoot;    fRoot = 0.5 / fRoot;    out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;    out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;    out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;  }  return out;}/** * Creates a quaternion from the given euler angle x, y, z. * * @param {quat} out the receiving quaternion * @param {x} Angle to rotate around X axis in degrees. * @param {y} Angle to rotate around Y axis in degrees. * @param {z} Angle to rotate around Z axis in degrees. * @returns {quat} out * @function */export function fromEuler(out, x, y, z) {    let halfToRad = 0.5 * Math.PI / 180.0;    x *= halfToRad;    y *= halfToRad;    z *= halfToRad;    let sx = Math.sin(x);    let cx = Math.cos(x);    let sy = Math.sin(y);    let cy = Math.cos(y);    let sz = Math.sin(z);    let cz = Math.cos(z);    out[0] = sx * cy * cz - cx * sy * sz;    out[1] = cx * sy * cz + sx * cy * sz;    out[2] = cx * cy * sz - sx * sy * cz;    out[3] = cx * cy * cz + sx * sy * sz;    return out;}/** * Returns a string representation of a quatenion * * @param {quat} a vector to represent as a string * @returns {String} string representation of the vector */export function str(a) {  return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';}/** * Creates a new quat initialized with values from an existing quaternion * * @param {quat} a quaternion to clone * @returns {quat} a new quaternion * @function */export const clone = vec4.clone;/** * Creates a new quat initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @param {Number} w W component * @returns {quat} a new quaternion * @function */export const fromValues = vec4.fromValues;/** * Copy the values from one quat to another * * @param {quat} out the receiving quaternion * @param {quat} a the source quaternion * @returns {quat} out * @function */export const copy = vec4.copy;/** * Set the components of a quat to the given values * * @param {quat} out the receiving quaternion * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @param {Number} w W component * @returns {quat} out * @function */export const set = vec4.set;/** * Adds two quat's * * @param {quat} out the receiving quaternion * @param {quat} a the first operand * @param {quat} b the second operand * @returns {quat} out * @function */export const add = vec4.add;/** * Alias for {@link quat.multiply} * @function */export const mul = multiply;/** * Scales a quat by a scalar number * * @param {quat} out the receiving vector * @param {quat} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {quat} out * @function */export const scale = vec4.scale;/** * Calculates the dot product of two quat's * * @param {quat} a the first operand * @param {quat} b the second operand * @returns {Number} dot product of a and b * @function */export const dot = vec4.dot;/** * Performs a linear interpolation between two quat's * * @param {quat} out the receiving quaternion * @param {quat} a the first operand * @param {quat} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {quat} out * @function */export const lerp = vec4.lerp;/** * Calculates the length of a quat * * @param {quat} a vector to calculate length of * @returns {Number} length of a */export const length = vec4.length;/** * Alias for {@link quat.length} * @function */export const len = length;/** * Calculates the squared length of a quat * * @param {quat} a vector to calculate squared length of * @returns {Number} squared length of a * @function */export const squaredLength = vec4.squaredLength;/** * Alias for {@link quat.squaredLength} * @function */export const sqrLen = squaredLength;/** * Normalize a quat * * @param {quat} out the receiving quaternion * @param {quat} a quaternion to normalize * @returns {quat} out * @function */export const normalize = vec4.normalize;/** * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===) * * @param {quat} a The first quaternion. * @param {quat} b The second quaternion. * @returns {Boolean} True if the vectors are equal, false otherwise. */export const exactEquals = vec4.exactEquals;/** * Returns whether or not the quaternions have approximately the same elements in the same position. * * @param {quat} a The first vector. * @param {quat} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */export const equals = vec4.equals;/** * Sets a quaternion to represent the shortest rotation from one * vector to another. * * Both vectors are assumed to be unit length. * * @param {quat} out the receiving quaternion. * @param {vec3} a the initial vector * @param {vec3} b the destination vector * @returns {quat} out */export const rotationTo = (function() {  let tmpvec3 = vec3.create();  let xUnitVec3 = vec3.fromValues(1,0,0);  let yUnitVec3 = vec3.fromValues(0,1,0);  return function(out, a, b) {    let dot = vec3.dot(a, b);    if (dot < -0.999999) {      vec3.cross(tmpvec3, xUnitVec3, a);      if (vec3.len(tmpvec3) < 0.000001)        vec3.cross(tmpvec3, yUnitVec3, a);      vec3.normalize(tmpvec3, tmpvec3);      setAxisAngle(out, tmpvec3, Math.PI);      return out;    } else if (dot > 0.999999) {      out[0] = 0;      out[1] = 0;      out[2] = 0;      out[3] = 1;      return out;    } else {      vec3.cross(tmpvec3, a, b);      out[0] = tmpvec3[0];      out[1] = tmpvec3[1];      out[2] = tmpvec3[2];      out[3] = 1 + dot;      return normalize(out, out);    }  };})();/** * Performs a spherical linear interpolation with two control points * * @param {quat} out the receiving quaternion * @param {quat} a the first operand * @param {quat} b the second operand * @param {quat} c the third operand * @param {quat} d the fourth operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {quat} out */export const sqlerp = (function () {  let temp1 = create();  let temp2 = create();  return function (out, a, b, c, d, t) {    slerp(temp1, a, d, t);    slerp(temp2, b, c, t);    slerp(out, temp1, temp2, 2 * t * (1 - t));    return out;  };}());/** * Sets the specified quaternion with values corresponding to the given * axes. Each axis is a vec3 and is expected to be unit length and * perpendicular to all other specified axes. * * @param {vec3} view  the vector representing the viewing direction * @param {vec3} right the vector representing the local "right" direction * @param {vec3} up    the vector representing the local "up" direction * @returns {quat} out */export const setAxes = (function() {  let matr = mat3.create();  return function(out, view, right, up) {    matr[0] = right[0];    matr[3] = right[1];    matr[6] = right[2];    matr[1] = up[0];    matr[4] = up[1];    matr[7] = up[2];    matr[2] = -view[0];    matr[5] = -view[1];    matr[8] = -view[2];    return normalize(out, fromMat3(out, matr));  };})();</code></pre>        </article>    </section></div><nav>    <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul></nav><br class="clear"><footer>    Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)</footer><script> prettyPrint(); </script><script src="scripts/linenumber.js"> </script></body></html>
 |