12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766 |
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <title>JSDoc: Source: mat4.js</title>
- <script src="scripts/prettify/prettify.js"> </script>
- <script src="scripts/prettify/lang-css.js"> </script>
- <!--[if lt IE 9]>
- <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
- <![endif]-->
- <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
- <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
- </head>
- <body>
- <div id="main">
- <h1 class="page-title">Source: mat4.js</h1>
-
-
- <section>
- <article>
- <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js";
- /**
- * 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied.
- * @module mat4
- */
- /**
- * Creates a new identity mat4
- *
- * @returns {mat4} a new 4x4 matrix
- */
- export function create() {
- let out = new glMatrix.ARRAY_TYPE(16);
- if(glMatrix.ARRAY_TYPE != Float32Array) {
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- }
- out[0] = 1;
- out[5] = 1;
- out[10] = 1;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a new mat4 initialized with values from an existing matrix
- *
- * @param {mat4} a matrix to clone
- * @returns {mat4} a new 4x4 matrix
- */
- export function clone(a) {
- let out = new glMatrix.ARRAY_TYPE(16);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- /**
- * Copy the values from one mat4 to another
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- export function copy(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- /**
- * Create a new mat4 with the given values
- *
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m02 Component in column 0, row 2 position (index 2)
- * @param {Number} m03 Component in column 0, row 3 position (index 3)
- * @param {Number} m10 Component in column 1, row 0 position (index 4)
- * @param {Number} m11 Component in column 1, row 1 position (index 5)
- * @param {Number} m12 Component in column 1, row 2 position (index 6)
- * @param {Number} m13 Component in column 1, row 3 position (index 7)
- * @param {Number} m20 Component in column 2, row 0 position (index 8)
- * @param {Number} m21 Component in column 2, row 1 position (index 9)
- * @param {Number} m22 Component in column 2, row 2 position (index 10)
- * @param {Number} m23 Component in column 2, row 3 position (index 11)
- * @param {Number} m30 Component in column 3, row 0 position (index 12)
- * @param {Number} m31 Component in column 3, row 1 position (index 13)
- * @param {Number} m32 Component in column 3, row 2 position (index 14)
- * @param {Number} m33 Component in column 3, row 3 position (index 15)
- * @returns {mat4} A new mat4
- */
- export function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
- let out = new glMatrix.ARRAY_TYPE(16);
- out[0] = m00;
- out[1] = m01;
- out[2] = m02;
- out[3] = m03;
- out[4] = m10;
- out[5] = m11;
- out[6] = m12;
- out[7] = m13;
- out[8] = m20;
- out[9] = m21;
- out[10] = m22;
- out[11] = m23;
- out[12] = m30;
- out[13] = m31;
- out[14] = m32;
- out[15] = m33;
- return out;
- }
- /**
- * Set the components of a mat4 to the given values
- *
- * @param {mat4} out the receiving matrix
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m02 Component in column 0, row 2 position (index 2)
- * @param {Number} m03 Component in column 0, row 3 position (index 3)
- * @param {Number} m10 Component in column 1, row 0 position (index 4)
- * @param {Number} m11 Component in column 1, row 1 position (index 5)
- * @param {Number} m12 Component in column 1, row 2 position (index 6)
- * @param {Number} m13 Component in column 1, row 3 position (index 7)
- * @param {Number} m20 Component in column 2, row 0 position (index 8)
- * @param {Number} m21 Component in column 2, row 1 position (index 9)
- * @param {Number} m22 Component in column 2, row 2 position (index 10)
- * @param {Number} m23 Component in column 2, row 3 position (index 11)
- * @param {Number} m30 Component in column 3, row 0 position (index 12)
- * @param {Number} m31 Component in column 3, row 1 position (index 13)
- * @param {Number} m32 Component in column 3, row 2 position (index 14)
- * @param {Number} m33 Component in column 3, row 3 position (index 15)
- * @returns {mat4} out
- */
- export function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
- out[0] = m00;
- out[1] = m01;
- out[2] = m02;
- out[3] = m03;
- out[4] = m10;
- out[5] = m11;
- out[6] = m12;
- out[7] = m13;
- out[8] = m20;
- out[9] = m21;
- out[10] = m22;
- out[11] = m23;
- out[12] = m30;
- out[13] = m31;
- out[14] = m32;
- out[15] = m33;
- return out;
- }
- /**
- * Set a mat4 to the identity matrix
- *
- * @param {mat4} out the receiving matrix
- * @returns {mat4} out
- */
- export function identity(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Transpose the values of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- export function transpose(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- let a01 = a[1], a02 = a[2], a03 = a[3];
- let a12 = a[6], a13 = a[7];
- let a23 = a[11];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
- return out;
- }
- /**
- * Inverts a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- export function invert(out, a) {
- let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- let b00 = a00 * a11 - a01 * a10;
- let b01 = a00 * a12 - a02 * a10;
- let b02 = a00 * a13 - a03 * a10;
- let b03 = a01 * a12 - a02 * a11;
- let b04 = a01 * a13 - a03 * a11;
- let b05 = a02 * a13 - a03 * a12;
- let b06 = a20 * a31 - a21 * a30;
- let b07 = a20 * a32 - a22 * a30;
- let b08 = a20 * a33 - a23 * a30;
- let b09 = a21 * a32 - a22 * a31;
- let b10 = a21 * a33 - a23 * a31;
- let b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
- return out;
- }
- /**
- * Calculates the adjugate of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- export function adjoint(out, a) {
- let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
- out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
- out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
- out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
- out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
- out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
- out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
- out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
- out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
- out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
- out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
- out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
- out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
- out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
- out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
- out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
- return out;
- }
- /**
- * Calculates the determinant of a mat4
- *
- * @param {mat4} a the source matrix
- * @returns {Number} determinant of a
- */
- export function determinant(a) {
- let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- let b00 = a00 * a11 - a01 * a10;
- let b01 = a00 * a12 - a02 * a10;
- let b02 = a00 * a13 - a03 * a10;
- let b03 = a01 * a12 - a02 * a11;
- let b04 = a01 * a13 - a03 * a11;
- let b05 = a02 * a13 - a03 * a12;
- let b06 = a20 * a31 - a21 * a30;
- let b07 = a20 * a32 - a22 * a30;
- let b08 = a20 * a33 - a23 * a30;
- let b09 = a21 * a32 - a22 * a31;
- let b10 = a21 * a33 - a23 * a31;
- let b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- }
- /**
- * Multiplies two mat4s
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
- export function multiply(out, a, b) {
- let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
- let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
- let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
- let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- // Cache only the current line of the second matrix
- let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- return out;
- }
- /**
- * Translate a mat4 by the given vector
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to translate
- * @param {vec3} v vector to translate by
- * @returns {mat4} out
- */
- export function translate(out, a, v) {
- let x = v[0], y = v[1], z = v[2];
- let a00, a01, a02, a03;
- let a10, a11, a12, a13;
- let a20, a21, a22, a23;
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
- return out;
- }
- /**
- * Scales the mat4 by the dimensions in the given vec3 not using vectorization
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to scale
- * @param {vec3} v the vec3 to scale the matrix by
- * @returns {mat4} out
- **/
- export function scale(out, a, v) {
- let x = v[0], y = v[1], z = v[2];
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- }
- /**
- * Rotates a mat4 by the given angle around the given axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
- export function rotate(out, a, rad, axis) {
- let x = axis[0], y = axis[1], z = axis[2];
- let len = Math.sqrt(x * x + y * y + z * z);
- let s, c, t;
- let a00, a01, a02, a03;
- let a10, a11, a12, a13;
- let a20, a21, a22, a23;
- let b00, b01, b02;
- let b10, b11, b12;
- let b20, b21, b22;
- if (len < glMatrix.EPSILON) { return null; }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- // Construct the elements of the rotation matrix
- b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
- b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
- b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
- }
- /**
- * Rotates a matrix by the given angle around the X axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function rotateX(out, a, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- let a10 = a[4];
- let a11 = a[5];
- let a12 = a[6];
- let a13 = a[7];
- let a20 = a[8];
- let a21 = a[9];
- let a22 = a[10];
- let a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[4] = a10 * c + a20 * s;
- out[5] = a11 * c + a21 * s;
- out[6] = a12 * c + a22 * s;
- out[7] = a13 * c + a23 * s;
- out[8] = a20 * c - a10 * s;
- out[9] = a21 * c - a11 * s;
- out[10] = a22 * c - a12 * s;
- out[11] = a23 * c - a13 * s;
- return out;
- }
- /**
- * Rotates a matrix by the given angle around the Y axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function rotateY(out, a, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- let a00 = a[0];
- let a01 = a[1];
- let a02 = a[2];
- let a03 = a[3];
- let a20 = a[8];
- let a21 = a[9];
- let a22 = a[10];
- let a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c - a20 * s;
- out[1] = a01 * c - a21 * s;
- out[2] = a02 * c - a22 * s;
- out[3] = a03 * c - a23 * s;
- out[8] = a00 * s + a20 * c;
- out[9] = a01 * s + a21 * c;
- out[10] = a02 * s + a22 * c;
- out[11] = a03 * s + a23 * c;
- return out;
- }
- /**
- * Rotates a matrix by the given angle around the Z axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function rotateZ(out, a, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- let a00 = a[0];
- let a01 = a[1];
- let a02 = a[2];
- let a03 = a[3];
- let a10 = a[4];
- let a11 = a[5];
- let a12 = a[6];
- let a13 = a[7];
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c + a10 * s;
- out[1] = a01 * c + a11 * s;
- out[2] = a02 * c + a12 * s;
- out[3] = a03 * c + a13 * s;
- out[4] = a10 * c - a00 * s;
- out[5] = a11 * c - a01 * s;
- out[6] = a12 * c - a02 * s;
- out[7] = a13 * c - a03 * s;
- return out;
- }
- /**
- * Creates a matrix from a vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, dest, vec);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
- export function fromTranslation(out, v) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.scale(dest, dest, vec);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {vec3} v Scaling vector
- * @returns {mat4} out
- */
- export function fromScaling(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = v[1];
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = v[2];
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a given angle around a given axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotate(dest, dest, rad, axis);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
- export function fromRotation(out, rad, axis) {
- let x = axis[0], y = axis[1], z = axis[2];
- let len = Math.sqrt(x * x + y * y + z * z);
- let s, c, t;
- if (len < glMatrix.EPSILON) { return null; }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- // Perform rotation-specific matrix multiplication
- out[0] = x * x * t + c;
- out[1] = y * x * t + z * s;
- out[2] = z * x * t - y * s;
- out[3] = 0;
- out[4] = x * y * t - z * s;
- out[5] = y * y * t + c;
- out[6] = z * y * t + x * s;
- out[7] = 0;
- out[8] = x * z * t + y * s;
- out[9] = y * z * t - x * s;
- out[10] = z * z * t + c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the X axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateX(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function fromXRotation(out, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = c;
- out[6] = s;
- out[7] = 0;
- out[8] = 0;
- out[9] = -s;
- out[10] = c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the Y axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateY(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function fromYRotation(out, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = c;
- out[1] = 0;
- out[2] = -s;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = s;
- out[9] = 0;
- out[10] = c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the Z axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateZ(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- export function fromZRotation(out, rad) {
- let s = Math.sin(rad);
- let c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = c;
- out[1] = s;
- out[2] = 0;
- out[3] = 0;
- out[4] = -s;
- out[5] = c;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a quaternion rotation and vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * let quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
- export function fromRotationTranslation(out, q, v) {
- // Quaternion math
- let x = q[0], y = q[1], z = q[2], w = q[3];
- let x2 = x + x;
- let y2 = y + y;
- let z2 = z + z;
- let xx = x * x2;
- let xy = x * y2;
- let xz = x * z2;
- let yy = y * y2;
- let yz = y * z2;
- let zz = z * z2;
- let wx = w * x2;
- let wy = w * y2;
- let wz = w * z2;
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
- out[3] = 0;
- out[4] = xy - wz;
- out[5] = 1 - (xx + zz);
- out[6] = yz + wx;
- out[7] = 0;
- out[8] = xz + wy;
- out[9] = yz - wx;
- out[10] = 1 - (xx + yy);
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- /**
- * Creates a new mat4 from a dual quat.
- *
- * @param {mat4} out Matrix
- * @param {quat2} a Dual Quaternion
- * @returns {mat4} mat4 receiving operation result
- */
- export function fromQuat2(out, a) {
- let translation = new glMatrix.ARRAY_TYPE(3);
- let bx = -a[0], by = -a[1], bz = -a[2], bw = a[3],
- ax = a[4], ay = a[5], az = a[6], aw = a[7];
- let magnitude = bx * bx + by * by + bz * bz + bw * bw;
- //Only scale if it makes sense
- if (magnitude > 0) {
- translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;
- translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;
- translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;
- } else {
- translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
- translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
- translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
- }
- fromRotationTranslation(out, a, translation);
- return out;
- }
- /**
- * Returns the translation vector component of a transformation
- * matrix. If a matrix is built with fromRotationTranslation,
- * the returned vector will be the same as the translation vector
- * originally supplied.
- * @param {vec3} out Vector to receive translation component
- * @param {mat4} mat Matrix to be decomposed (input)
- * @return {vec3} out
- */
- export function getTranslation(out, mat) {
- out[0] = mat[12];
- out[1] = mat[13];
- out[2] = mat[14];
- return out;
- }
- /**
- * Returns the scaling factor component of a transformation
- * matrix. If a matrix is built with fromRotationTranslationScale
- * with a normalized Quaternion paramter, the returned vector will be
- * the same as the scaling vector
- * originally supplied.
- * @param {vec3} out Vector to receive scaling factor component
- * @param {mat4} mat Matrix to be decomposed (input)
- * @return {vec3} out
- */
- export function getScaling(out, mat) {
- let m11 = mat[0];
- let m12 = mat[1];
- let m13 = mat[2];
- let m21 = mat[4];
- let m22 = mat[5];
- let m23 = mat[6];
- let m31 = mat[8];
- let m32 = mat[9];
- let m33 = mat[10];
- out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
- out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
- out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
- return out;
- }
- /**
- * Returns a quaternion representing the rotational component
- * of a transformation matrix. If a matrix is built with
- * fromRotationTranslation, the returned quaternion will be the
- * same as the quaternion originally supplied.
- * @param {quat} out Quaternion to receive the rotation component
- * @param {mat4} mat Matrix to be decomposed (input)
- * @return {quat} out
- */
- export function getRotation(out, mat) {
- // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- let trace = mat[0] + mat[5] + mat[10];
- let S = 0;
- if (trace > 0) {
- S = Math.sqrt(trace + 1.0) * 2;
- out[3] = 0.25 * S;
- out[0] = (mat[6] - mat[9]) / S;
- out[1] = (mat[8] - mat[2]) / S;
- out[2] = (mat[1] - mat[4]) / S;
- } else if ((mat[0] > mat[5]) && (mat[0] > mat[10])) {
- S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
- out[3] = (mat[6] - mat[9]) / S;
- out[0] = 0.25 * S;
- out[1] = (mat[1] + mat[4]) / S;
- out[2] = (mat[8] + mat[2]) / S;
- } else if (mat[5] > mat[10]) {
- S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
- out[3] = (mat[8] - mat[2]) / S;
- out[0] = (mat[1] + mat[4]) / S;
- out[1] = 0.25 * S;
- out[2] = (mat[6] + mat[9]) / S;
- } else {
- S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
- out[3] = (mat[1] - mat[4]) / S;
- out[0] = (mat[8] + mat[2]) / S;
- out[1] = (mat[6] + mat[9]) / S;
- out[2] = 0.25 * S;
- }
- return out;
- }
- /**
- * Creates a matrix from a quaternion rotation, vector translation and vector scale
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * let quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- * mat4.scale(dest, scale)
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @param {vec3} s Scaling vector
- * @returns {mat4} out
- */
- export function fromRotationTranslationScale(out, q, v, s) {
- // Quaternion math
- let x = q[0], y = q[1], z = q[2], w = q[3];
- let x2 = x + x;
- let y2 = y + y;
- let z2 = z + z;
- let xx = x * x2;
- let xy = x * y2;
- let xz = x * z2;
- let yy = y * y2;
- let yz = y * z2;
- let zz = z * z2;
- let wx = w * x2;
- let wy = w * y2;
- let wz = w * z2;
- let sx = s[0];
- let sy = s[1];
- let sz = s[2];
- out[0] = (1 - (yy + zz)) * sx;
- out[1] = (xy + wz) * sx;
- out[2] = (xz - wy) * sx;
- out[3] = 0;
- out[4] = (xy - wz) * sy;
- out[5] = (1 - (xx + zz)) * sy;
- out[6] = (yz + wx) * sy;
- out[7] = 0;
- out[8] = (xz + wy) * sz;
- out[9] = (yz - wx) * sz;
- out[10] = (1 - (xx + yy)) * sz;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * mat4.translate(dest, origin);
- * let quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- * mat4.scale(dest, scale)
- * mat4.translate(dest, negativeOrigin);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @param {vec3} s Scaling vector
- * @param {vec3} o The origin vector around which to scale and rotate
- * @returns {mat4} out
- */
- export function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
- // Quaternion math
- let x = q[0], y = q[1], z = q[2], w = q[3];
- let x2 = x + x;
- let y2 = y + y;
- let z2 = z + z;
- let xx = x * x2;
- let xy = x * y2;
- let xz = x * z2;
- let yy = y * y2;
- let yz = y * z2;
- let zz = z * z2;
- let wx = w * x2;
- let wy = w * y2;
- let wz = w * z2;
- let sx = s[0];
- let sy = s[1];
- let sz = s[2];
- let ox = o[0];
- let oy = o[1];
- let oz = o[2];
- let out0 = (1 - (yy + zz)) * sx;
- let out1 = (xy + wz) * sx;
- let out2 = (xz - wy) * sx;
- let out4 = (xy - wz) * sy;
- let out5 = (1 - (xx + zz)) * sy;
- let out6 = (yz + wx) * sy;
- let out8 = (xz + wy) * sz;
- let out9 = (yz - wx) * sz;
- let out10 = (1 - (xx + yy)) * sz;
- out[0] = out0;
- out[1] = out1;
- out[2] = out2;
- out[3] = 0;
- out[4] = out4;
- out[5] = out5;
- out[6] = out6;
- out[7] = 0;
- out[8] = out8;
- out[9] = out9;
- out[10] = out10;
- out[11] = 0;
- out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);
- out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);
- out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);
- out[15] = 1;
- return out;
- }
- /**
- * Calculates a 4x4 matrix from the given quaternion
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat} q Quaternion to create matrix from
- *
- * @returns {mat4} out
- */
- export function fromQuat(out, q) {
- let x = q[0], y = q[1], z = q[2], w = q[3];
- let x2 = x + x;
- let y2 = y + y;
- let z2 = z + z;
- let xx = x * x2;
- let yx = y * x2;
- let yy = y * y2;
- let zx = z * x2;
- let zy = z * y2;
- let zz = z * z2;
- let wx = w * x2;
- let wy = w * y2;
- let wz = w * z2;
- out[0] = 1 - yy - zz;
- out[1] = yx + wz;
- out[2] = zx - wy;
- out[3] = 0;
- out[4] = yx - wz;
- out[5] = 1 - xx - zz;
- out[6] = zy + wx;
- out[7] = 0;
- out[8] = zx + wy;
- out[9] = zy - wx;
- out[10] = 1 - xx - yy;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a frustum matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {Number} left Left bound of the frustum
- * @param {Number} right Right bound of the frustum
- * @param {Number} bottom Bottom bound of the frustum
- * @param {Number} top Top bound of the frustum
- * @param {Number} near Near bound of the frustum
- * @param {Number} far Far bound of the frustum
- * @returns {mat4} out
- */
- export function frustum(out, left, right, bottom, top, near, far) {
- let rl = 1 / (right - left);
- let tb = 1 / (top - bottom);
- let nf = 1 / (near - far);
- out[0] = (near * 2) * rl;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = (near * 2) * tb;
- out[6] = 0;
- out[7] = 0;
- out[8] = (right + left) * rl;
- out[9] = (top + bottom) * tb;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (far * near * 2) * nf;
- out[15] = 0;
- return out;
- }
- /**
- * Generates a perspective projection matrix with the given bounds.
- * Passing null/undefined/no value for far will generate infinite projection matrix.
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} fovy Vertical field of view in radians
- * @param {number} aspect Aspect ratio. typically viewport width/height
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum, can be null or Infinity
- * @returns {mat4} out
- */
- export function perspective(out, fovy, aspect, near, far) {
- let f = 1.0 / Math.tan(fovy / 2), nf;
- out[0] = f / aspect;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = f;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[15] = 0;
- if (far != null && far !== Infinity) {
- nf = 1 / (near - far);
- out[10] = (far + near) * nf;
- out[14] = (2 * far * near) * nf;
- } else {
- out[10] = -1;
- out[14] = -2 * near;
- }
- return out;
- }
- /**
- * Generates a perspective projection matrix with the given field of view.
- * This is primarily useful for generating projection matrices to be used
- * with the still experiemental WebVR API.
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- export function perspectiveFromFieldOfView(out, fov, near, far) {
- let upTan = Math.tan(fov.upDegrees * Math.PI/180.0);
- let downTan = Math.tan(fov.downDegrees * Math.PI/180.0);
- let leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0);
- let rightTan = Math.tan(fov.rightDegrees * Math.PI/180.0);
- let xScale = 2.0 / (leftTan + rightTan);
- let yScale = 2.0 / (upTan + downTan);
- out[0] = xScale;
- out[1] = 0.0;
- out[2] = 0.0;
- out[3] = 0.0;
- out[4] = 0.0;
- out[5] = yScale;
- out[6] = 0.0;
- out[7] = 0.0;
- out[8] = -((leftTan - rightTan) * xScale * 0.5);
- out[9] = ((upTan - downTan) * yScale * 0.5);
- out[10] = far / (near - far);
- out[11] = -1.0;
- out[12] = 0.0;
- out[13] = 0.0;
- out[14] = (far * near) / (near - far);
- out[15] = 0.0;
- return out;
- }
- /**
- * Generates a orthogonal projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} left Left bound of the frustum
- * @param {number} right Right bound of the frustum
- * @param {number} bottom Bottom bound of the frustum
- * @param {number} top Top bound of the frustum
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- export function ortho(out, left, right, bottom, top, near, far) {
- let lr = 1 / (left - right);
- let bt = 1 / (bottom - top);
- let nf = 1 / (near - far);
- out[0] = -2 * lr;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = -2 * bt;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 2 * nf;
- out[11] = 0;
- out[12] = (left + right) * lr;
- out[13] = (top + bottom) * bt;
- out[14] = (far + near) * nf;
- out[15] = 1;
- return out;
- }
- /**
- * Generates a look-at matrix with the given eye position, focal point, and up axis.
- * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {vec3} eye Position of the viewer
- * @param {vec3} center Point the viewer is looking at
- * @param {vec3} up vec3 pointing up
- * @returns {mat4} out
- */
- export function lookAt(out, eye, center, up) {
- let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
- let eyex = eye[0];
- let eyey = eye[1];
- let eyez = eye[2];
- let upx = up[0];
- let upy = up[1];
- let upz = up[2];
- let centerx = center[0];
- let centery = center[1];
- let centerz = center[2];
- if (Math.abs(eyex - centerx) < glMatrix.EPSILON &&
- Math.abs(eyey - centery) < glMatrix.EPSILON &&
- Math.abs(eyez - centerz) < glMatrix.EPSILON) {
- return identity(out);
- }
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
- return out;
- }
- /**
- * Generates a matrix that makes something look at something else.
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {vec3} eye Position of the viewer
- * @param {vec3} center Point the viewer is looking at
- * @param {vec3} up vec3 pointing up
- * @returns {mat4} out
- */
- export function targetTo(out, eye, target, up) {
- let eyex = eye[0],
- eyey = eye[1],
- eyez = eye[2],
- upx = up[0],
- upy = up[1],
- upz = up[2];
- let z0 = eyex - target[0],
- z1 = eyey - target[1],
- z2 = eyez - target[2];
- let len = z0*z0 + z1*z1 + z2*z2;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- }
- let x0 = upy * z2 - upz * z1,
- x1 = upz * z0 - upx * z2,
- x2 = upx * z1 - upy * z0;
- len = x0*x0 + x1*x1 + x2*x2;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- out[0] = x0;
- out[1] = x1;
- out[2] = x2;
- out[3] = 0;
- out[4] = z1 * x2 - z2 * x1;
- out[5] = z2 * x0 - z0 * x2;
- out[6] = z0 * x1 - z1 * x0;
- out[7] = 0;
- out[8] = z0;
- out[9] = z1;
- out[10] = z2;
- out[11] = 0;
- out[12] = eyex;
- out[13] = eyey;
- out[14] = eyez;
- out[15] = 1;
- return out;
- };
- /**
- * Returns a string representation of a mat4
- *
- * @param {mat4} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- export function str(a) {
- return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
- a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
- a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
- a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
- }
- /**
- * Returns Frobenius norm of a mat4
- *
- * @param {mat4} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- export function frob(a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
- }
- /**
- * Adds two mat4's
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
- export function add(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- out[4] = a[4] + b[4];
- out[5] = a[5] + b[5];
- out[6] = a[6] + b[6];
- out[7] = a[7] + b[7];
- out[8] = a[8] + b[8];
- out[9] = a[9] + b[9];
- out[10] = a[10] + b[10];
- out[11] = a[11] + b[11];
- out[12] = a[12] + b[12];
- out[13] = a[13] + b[13];
- out[14] = a[14] + b[14];
- out[15] = a[15] + b[15];
- return out;
- }
- /**
- * Subtracts matrix b from matrix a
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
- export function subtract(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- out[4] = a[4] - b[4];
- out[5] = a[5] - b[5];
- out[6] = a[6] - b[6];
- out[7] = a[7] - b[7];
- out[8] = a[8] - b[8];
- out[9] = a[9] - b[9];
- out[10] = a[10] - b[10];
- out[11] = a[11] - b[11];
- out[12] = a[12] - b[12];
- out[13] = a[13] - b[13];
- out[14] = a[14] - b[14];
- out[15] = a[15] - b[15];
- return out;
- }
- /**
- * Multiply each element of the matrix by a scalar.
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to scale
- * @param {Number} b amount to scale the matrix's elements by
- * @returns {mat4} out
- */
- export function multiplyScalar(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- out[4] = a[4] * b;
- out[5] = a[5] * b;
- out[6] = a[6] * b;
- out[7] = a[7] * b;
- out[8] = a[8] * b;
- out[9] = a[9] * b;
- out[10] = a[10] * b;
- out[11] = a[11] * b;
- out[12] = a[12] * b;
- out[13] = a[13] * b;
- out[14] = a[14] * b;
- out[15] = a[15] * b;
- return out;
- }
- /**
- * Adds two mat4's after multiplying each element of the second operand by a scalar value.
- *
- * @param {mat4} out the receiving vector
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @param {Number} scale the amount to scale b's elements by before adding
- * @returns {mat4} out
- */
- export function multiplyScalarAndAdd(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- out[3] = a[3] + (b[3] * scale);
- out[4] = a[4] + (b[4] * scale);
- out[5] = a[5] + (b[5] * scale);
- out[6] = a[6] + (b[6] * scale);
- out[7] = a[7] + (b[7] * scale);
- out[8] = a[8] + (b[8] * scale);
- out[9] = a[9] + (b[9] * scale);
- out[10] = a[10] + (b[10] * scale);
- out[11] = a[11] + (b[11] * scale);
- out[12] = a[12] + (b[12] * scale);
- out[13] = a[13] + (b[13] * scale);
- out[14] = a[14] + (b[14] * scale);
- out[15] = a[15] + (b[15] * scale);
- return out;
- }
- /**
- * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
- *
- * @param {mat4} a The first matrix.
- * @param {mat4} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- export function exactEquals(a, b) {
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] &&
- a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] &&
- a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] &&
- a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
- }
- /**
- * Returns whether or not the matrices have approximately the same elements in the same position.
- *
- * @param {mat4} a The first matrix.
- * @param {mat4} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- export function equals(a, b) {
- let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- let a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7];
- let a8 = a[8], a9 = a[9], a10 = a[10], a11 = a[11];
- let a12 = a[12], a13 = a[13], a14 = a[14], a15 = a[15];
- let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- let b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7];
- let b8 = b[8], b9 = b[9], b10 = b[10], b11 = b[11];
- let b12 = b[12], b13 = b[13], b14 = b[14], b15 = b[15];
- return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
- Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
- Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
- Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
- Math.abs(a4 - b4) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
- Math.abs(a5 - b5) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
- Math.abs(a6 - b6) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
- Math.abs(a7 - b7) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a7), Math.abs(b7)) &&
- Math.abs(a8 - b8) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a8), Math.abs(b8)) &&
- Math.abs(a9 - b9) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a9), Math.abs(b9)) &&
- Math.abs(a10 - b10) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a10), Math.abs(b10)) &&
- Math.abs(a11 - b11) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a11), Math.abs(b11)) &&
- Math.abs(a12 - b12) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a12), Math.abs(b12)) &&
- Math.abs(a13 - b13) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a13), Math.abs(b13)) &&
- Math.abs(a14 - b14) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a14), Math.abs(b14)) &&
- Math.abs(a15 - b15) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a15), Math.abs(b15)));
- }
- /**
- * Alias for {@link mat4.multiply}
- * @function
- */
- export const mul = multiply;
- /**
- * Alias for {@link mat4.subtract}
- * @function
- */
- export const sub = subtract;
- </code></pre>
- </article>
- </section>
- </div>
- <nav>
- <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul>
- </nav>
- <br class="clear">
- <footer>
- Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)
- </footer>
- <script> prettyPrint(); </script>
- <script src="scripts/linenumber.js"> </script>
- </body>
- </html>
|