quat.js.html 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. <!DOCTYPE html>
  2. <html lang="en">
  3. <head>
  4. <meta charset="utf-8">
  5. <title>JSDoc: Source: quat.js</title>
  6. <script src="scripts/prettify/prettify.js"> </script>
  7. <script src="scripts/prettify/lang-css.js"> </script>
  8. <!--[if lt IE 9]>
  9. <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
  10. <![endif]-->
  11. <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
  12. <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
  13. </head>
  14. <body>
  15. <div id="main">
  16. <h1 class="page-title">Source: quat.js</h1>
  17. <section>
  18. <article>
  19. <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"
  20. import * as mat3 from "./mat3.js"
  21. import * as vec3 from "./vec3.js"
  22. import * as vec4 from "./vec4.js"
  23. /**
  24. * Quaternion
  25. * @module quat
  26. */
  27. /**
  28. * Creates a new identity quat
  29. *
  30. * @returns {quat} a new quaternion
  31. */
  32. export function create() {
  33. let out = new glMatrix.ARRAY_TYPE(4);
  34. if(glMatrix.ARRAY_TYPE != Float32Array) {
  35. out[0] = 0;
  36. out[1] = 0;
  37. out[2] = 0;
  38. }
  39. out[3] = 1;
  40. return out;
  41. }
  42. /**
  43. * Set a quat to the identity quaternion
  44. *
  45. * @param {quat} out the receiving quaternion
  46. * @returns {quat} out
  47. */
  48. export function identity(out) {
  49. out[0] = 0;
  50. out[1] = 0;
  51. out[2] = 0;
  52. out[3] = 1;
  53. return out;
  54. }
  55. /**
  56. * Sets a quat from the given angle and rotation axis,
  57. * then returns it.
  58. *
  59. * @param {quat} out the receiving quaternion
  60. * @param {vec3} axis the axis around which to rotate
  61. * @param {Number} rad the angle in radians
  62. * @returns {quat} out
  63. **/
  64. export function setAxisAngle(out, axis, rad) {
  65. rad = rad * 0.5;
  66. let s = Math.sin(rad);
  67. out[0] = s * axis[0];
  68. out[1] = s * axis[1];
  69. out[2] = s * axis[2];
  70. out[3] = Math.cos(rad);
  71. return out;
  72. }
  73. /**
  74. * Gets the rotation axis and angle for a given
  75. * quaternion. If a quaternion is created with
  76. * setAxisAngle, this method will return the same
  77. * values as providied in the original parameter list
  78. * OR functionally equivalent values.
  79. * Example: The quaternion formed by axis [0, 0, 1] and
  80. * angle -90 is the same as the quaternion formed by
  81. * [0, 0, 1] and 270. This method favors the latter.
  82. * @param {vec3} out_axis Vector receiving the axis of rotation
  83. * @param {quat} q Quaternion to be decomposed
  84. * @return {Number} Angle, in radians, of the rotation
  85. */
  86. export function getAxisAngle(out_axis, q) {
  87. let rad = Math.acos(q[3]) * 2.0;
  88. let s = Math.sin(rad / 2.0);
  89. if (s > glMatrix.EPSILON) {
  90. out_axis[0] = q[0] / s;
  91. out_axis[1] = q[1] / s;
  92. out_axis[2] = q[2] / s;
  93. } else {
  94. // If s is zero, return any axis (no rotation - axis does not matter)
  95. out_axis[0] = 1;
  96. out_axis[1] = 0;
  97. out_axis[2] = 0;
  98. }
  99. return rad;
  100. }
  101. /**
  102. * Multiplies two quat's
  103. *
  104. * @param {quat} out the receiving quaternion
  105. * @param {quat} a the first operand
  106. * @param {quat} b the second operand
  107. * @returns {quat} out
  108. */
  109. export function multiply(out, a, b) {
  110. let ax = a[0], ay = a[1], az = a[2], aw = a[3];
  111. let bx = b[0], by = b[1], bz = b[2], bw = b[3];
  112. out[0] = ax * bw + aw * bx + ay * bz - az * by;
  113. out[1] = ay * bw + aw * by + az * bx - ax * bz;
  114. out[2] = az * bw + aw * bz + ax * by - ay * bx;
  115. out[3] = aw * bw - ax * bx - ay * by - az * bz;
  116. return out;
  117. }
  118. /**
  119. * Rotates a quaternion by the given angle about the X axis
  120. *
  121. * @param {quat} out quat receiving operation result
  122. * @param {quat} a quat to rotate
  123. * @param {number} rad angle (in radians) to rotate
  124. * @returns {quat} out
  125. */
  126. export function rotateX(out, a, rad) {
  127. rad *= 0.5;
  128. let ax = a[0], ay = a[1], az = a[2], aw = a[3];
  129. let bx = Math.sin(rad), bw = Math.cos(rad);
  130. out[0] = ax * bw + aw * bx;
  131. out[1] = ay * bw + az * bx;
  132. out[2] = az * bw - ay * bx;
  133. out[3] = aw * bw - ax * bx;
  134. return out;
  135. }
  136. /**
  137. * Rotates a quaternion by the given angle about the Y axis
  138. *
  139. * @param {quat} out quat receiving operation result
  140. * @param {quat} a quat to rotate
  141. * @param {number} rad angle (in radians) to rotate
  142. * @returns {quat} out
  143. */
  144. export function rotateY(out, a, rad) {
  145. rad *= 0.5;
  146. let ax = a[0], ay = a[1], az = a[2], aw = a[3];
  147. let by = Math.sin(rad), bw = Math.cos(rad);
  148. out[0] = ax * bw - az * by;
  149. out[1] = ay * bw + aw * by;
  150. out[2] = az * bw + ax * by;
  151. out[3] = aw * bw - ay * by;
  152. return out;
  153. }
  154. /**
  155. * Rotates a quaternion by the given angle about the Z axis
  156. *
  157. * @param {quat} out quat receiving operation result
  158. * @param {quat} a quat to rotate
  159. * @param {number} rad angle (in radians) to rotate
  160. * @returns {quat} out
  161. */
  162. export function rotateZ(out, a, rad) {
  163. rad *= 0.5;
  164. let ax = a[0], ay = a[1], az = a[2], aw = a[3];
  165. let bz = Math.sin(rad), bw = Math.cos(rad);
  166. out[0] = ax * bw + ay * bz;
  167. out[1] = ay * bw - ax * bz;
  168. out[2] = az * bw + aw * bz;
  169. out[3] = aw * bw - az * bz;
  170. return out;
  171. }
  172. /**
  173. * Calculates the W component of a quat from the X, Y, and Z components.
  174. * Assumes that quaternion is 1 unit in length.
  175. * Any existing W component will be ignored.
  176. *
  177. * @param {quat} out the receiving quaternion
  178. * @param {quat} a quat to calculate W component of
  179. * @returns {quat} out
  180. */
  181. export function calculateW(out, a) {
  182. let x = a[0], y = a[1], z = a[2];
  183. out[0] = x;
  184. out[1] = y;
  185. out[2] = z;
  186. out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
  187. return out;
  188. }
  189. /**
  190. * Performs a spherical linear interpolation between two quat
  191. *
  192. * @param {quat} out the receiving quaternion
  193. * @param {quat} a the first operand
  194. * @param {quat} b the second operand
  195. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  196. * @returns {quat} out
  197. */
  198. export function slerp(out, a, b, t) {
  199. // benchmarks:
  200. // http://jsperf.com/quaternion-slerp-implementations
  201. let ax = a[0], ay = a[1], az = a[2], aw = a[3];
  202. let bx = b[0], by = b[1], bz = b[2], bw = b[3];
  203. let omega, cosom, sinom, scale0, scale1;
  204. // calc cosine
  205. cosom = ax * bx + ay * by + az * bz + aw * bw;
  206. // adjust signs (if necessary)
  207. if ( cosom &lt; 0.0 ) {
  208. cosom = -cosom;
  209. bx = - bx;
  210. by = - by;
  211. bz = - bz;
  212. bw = - bw;
  213. }
  214. // calculate coefficients
  215. if ( (1.0 - cosom) > glMatrix.EPSILON ) {
  216. // standard case (slerp)
  217. omega = Math.acos(cosom);
  218. sinom = Math.sin(omega);
  219. scale0 = Math.sin((1.0 - t) * omega) / sinom;
  220. scale1 = Math.sin(t * omega) / sinom;
  221. } else {
  222. // "from" and "to" quaternions are very close
  223. // ... so we can do a linear interpolation
  224. scale0 = 1.0 - t;
  225. scale1 = t;
  226. }
  227. // calculate final values
  228. out[0] = scale0 * ax + scale1 * bx;
  229. out[1] = scale0 * ay + scale1 * by;
  230. out[2] = scale0 * az + scale1 * bz;
  231. out[3] = scale0 * aw + scale1 * bw;
  232. return out;
  233. }
  234. /**
  235. * Generates a random quaternion
  236. *
  237. * @param {quat} out the receiving quaternion
  238. * @returns {quat} out
  239. */
  240. export function random(out) {
  241. // Implementation of http://planning.cs.uiuc.edu/node198.html
  242. // TODO: Calling random 3 times is probably not the fastest solution
  243. let u1 = glMatrix.RANDOM();
  244. let u2 = glMatrix.RANDOM();
  245. let u3 = glMatrix.RANDOM();
  246. let sqrt1MinusU1 = Math.sqrt(1 - u1);
  247. let sqrtU1 = Math.sqrt(u1);
  248. out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
  249. out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
  250. out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
  251. out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
  252. return out;
  253. }
  254. /**
  255. * Calculates the inverse of a quat
  256. *
  257. * @param {quat} out the receiving quaternion
  258. * @param {quat} a quat to calculate inverse of
  259. * @returns {quat} out
  260. */
  261. export function invert(out, a) {
  262. let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
  263. let dot = a0*a0 + a1*a1 + a2*a2 + a3*a3;
  264. let invDot = dot ? 1.0/dot : 0;
  265. // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
  266. out[0] = -a0*invDot;
  267. out[1] = -a1*invDot;
  268. out[2] = -a2*invDot;
  269. out[3] = a3*invDot;
  270. return out;
  271. }
  272. /**
  273. * Calculates the conjugate of a quat
  274. * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
  275. *
  276. * @param {quat} out the receiving quaternion
  277. * @param {quat} a quat to calculate conjugate of
  278. * @returns {quat} out
  279. */
  280. export function conjugate(out, a) {
  281. out[0] = -a[0];
  282. out[1] = -a[1];
  283. out[2] = -a[2];
  284. out[3] = a[3];
  285. return out;
  286. }
  287. /**
  288. * Creates a quaternion from the given 3x3 rotation matrix.
  289. *
  290. * NOTE: The resultant quaternion is not normalized, so you should be sure
  291. * to renormalize the quaternion yourself where necessary.
  292. *
  293. * @param {quat} out the receiving quaternion
  294. * @param {mat3} m rotation matrix
  295. * @returns {quat} out
  296. * @function
  297. */
  298. export function fromMat3(out, m) {
  299. // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
  300. // article "Quaternion Calculus and Fast Animation".
  301. let fTrace = m[0] + m[4] + m[8];
  302. let fRoot;
  303. if ( fTrace > 0.0 ) {
  304. // |w| > 1/2, may as well choose w > 1/2
  305. fRoot = Math.sqrt(fTrace + 1.0); // 2w
  306. out[3] = 0.5 * fRoot;
  307. fRoot = 0.5/fRoot; // 1/(4w)
  308. out[0] = (m[5]-m[7])*fRoot;
  309. out[1] = (m[6]-m[2])*fRoot;
  310. out[2] = (m[1]-m[3])*fRoot;
  311. } else {
  312. // |w| &lt;= 1/2
  313. let i = 0;
  314. if ( m[4] > m[0] )
  315. i = 1;
  316. if ( m[8] > m[i*3+i] )
  317. i = 2;
  318. let j = (i+1)%3;
  319. let k = (i+2)%3;
  320. fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
  321. out[i] = 0.5 * fRoot;
  322. fRoot = 0.5 / fRoot;
  323. out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
  324. out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
  325. out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
  326. }
  327. return out;
  328. }
  329. /**
  330. * Creates a quaternion from the given euler angle x, y, z.
  331. *
  332. * @param {quat} out the receiving quaternion
  333. * @param {x} Angle to rotate around X axis in degrees.
  334. * @param {y} Angle to rotate around Y axis in degrees.
  335. * @param {z} Angle to rotate around Z axis in degrees.
  336. * @returns {quat} out
  337. * @function
  338. */
  339. export function fromEuler(out, x, y, z) {
  340. let halfToRad = 0.5 * Math.PI / 180.0;
  341. x *= halfToRad;
  342. y *= halfToRad;
  343. z *= halfToRad;
  344. let sx = Math.sin(x);
  345. let cx = Math.cos(x);
  346. let sy = Math.sin(y);
  347. let cy = Math.cos(y);
  348. let sz = Math.sin(z);
  349. let cz = Math.cos(z);
  350. out[0] = sx * cy * cz - cx * sy * sz;
  351. out[1] = cx * sy * cz + sx * cy * sz;
  352. out[2] = cx * cy * sz - sx * sy * cz;
  353. out[3] = cx * cy * cz + sx * sy * sz;
  354. return out;
  355. }
  356. /**
  357. * Returns a string representation of a quatenion
  358. *
  359. * @param {quat} a vector to represent as a string
  360. * @returns {String} string representation of the vector
  361. */
  362. export function str(a) {
  363. return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
  364. }
  365. /**
  366. * Creates a new quat initialized with values from an existing quaternion
  367. *
  368. * @param {quat} a quaternion to clone
  369. * @returns {quat} a new quaternion
  370. * @function
  371. */
  372. export const clone = vec4.clone;
  373. /**
  374. * Creates a new quat initialized with the given values
  375. *
  376. * @param {Number} x X component
  377. * @param {Number} y Y component
  378. * @param {Number} z Z component
  379. * @param {Number} w W component
  380. * @returns {quat} a new quaternion
  381. * @function
  382. */
  383. export const fromValues = vec4.fromValues;
  384. /**
  385. * Copy the values from one quat to another
  386. *
  387. * @param {quat} out the receiving quaternion
  388. * @param {quat} a the source quaternion
  389. * @returns {quat} out
  390. * @function
  391. */
  392. export const copy = vec4.copy;
  393. /**
  394. * Set the components of a quat to the given values
  395. *
  396. * @param {quat} out the receiving quaternion
  397. * @param {Number} x X component
  398. * @param {Number} y Y component
  399. * @param {Number} z Z component
  400. * @param {Number} w W component
  401. * @returns {quat} out
  402. * @function
  403. */
  404. export const set = vec4.set;
  405. /**
  406. * Adds two quat's
  407. *
  408. * @param {quat} out the receiving quaternion
  409. * @param {quat} a the first operand
  410. * @param {quat} b the second operand
  411. * @returns {quat} out
  412. * @function
  413. */
  414. export const add = vec4.add;
  415. /**
  416. * Alias for {@link quat.multiply}
  417. * @function
  418. */
  419. export const mul = multiply;
  420. /**
  421. * Scales a quat by a scalar number
  422. *
  423. * @param {quat} out the receiving vector
  424. * @param {quat} a the vector to scale
  425. * @param {Number} b amount to scale the vector by
  426. * @returns {quat} out
  427. * @function
  428. */
  429. export const scale = vec4.scale;
  430. /**
  431. * Calculates the dot product of two quat's
  432. *
  433. * @param {quat} a the first operand
  434. * @param {quat} b the second operand
  435. * @returns {Number} dot product of a and b
  436. * @function
  437. */
  438. export const dot = vec4.dot;
  439. /**
  440. * Performs a linear interpolation between two quat's
  441. *
  442. * @param {quat} out the receiving quaternion
  443. * @param {quat} a the first operand
  444. * @param {quat} b the second operand
  445. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  446. * @returns {quat} out
  447. * @function
  448. */
  449. export const lerp = vec4.lerp;
  450. /**
  451. * Calculates the length of a quat
  452. *
  453. * @param {quat} a vector to calculate length of
  454. * @returns {Number} length of a
  455. */
  456. export const length = vec4.length;
  457. /**
  458. * Alias for {@link quat.length}
  459. * @function
  460. */
  461. export const len = length;
  462. /**
  463. * Calculates the squared length of a quat
  464. *
  465. * @param {quat} a vector to calculate squared length of
  466. * @returns {Number} squared length of a
  467. * @function
  468. */
  469. export const squaredLength = vec4.squaredLength;
  470. /**
  471. * Alias for {@link quat.squaredLength}
  472. * @function
  473. */
  474. export const sqrLen = squaredLength;
  475. /**
  476. * Normalize a quat
  477. *
  478. * @param {quat} out the receiving quaternion
  479. * @param {quat} a quaternion to normalize
  480. * @returns {quat} out
  481. * @function
  482. */
  483. export const normalize = vec4.normalize;
  484. /**
  485. * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
  486. *
  487. * @param {quat} a The first quaternion.
  488. * @param {quat} b The second quaternion.
  489. * @returns {Boolean} True if the vectors are equal, false otherwise.
  490. */
  491. export const exactEquals = vec4.exactEquals;
  492. /**
  493. * Returns whether or not the quaternions have approximately the same elements in the same position.
  494. *
  495. * @param {quat} a The first vector.
  496. * @param {quat} b The second vector.
  497. * @returns {Boolean} True if the vectors are equal, false otherwise.
  498. */
  499. export const equals = vec4.equals;
  500. /**
  501. * Sets a quaternion to represent the shortest rotation from one
  502. * vector to another.
  503. *
  504. * Both vectors are assumed to be unit length.
  505. *
  506. * @param {quat} out the receiving quaternion.
  507. * @param {vec3} a the initial vector
  508. * @param {vec3} b the destination vector
  509. * @returns {quat} out
  510. */
  511. export const rotationTo = (function() {
  512. let tmpvec3 = vec3.create();
  513. let xUnitVec3 = vec3.fromValues(1,0,0);
  514. let yUnitVec3 = vec3.fromValues(0,1,0);
  515. return function(out, a, b) {
  516. let dot = vec3.dot(a, b);
  517. if (dot &lt; -0.999999) {
  518. vec3.cross(tmpvec3, xUnitVec3, a);
  519. if (vec3.len(tmpvec3) &lt; 0.000001)
  520. vec3.cross(tmpvec3, yUnitVec3, a);
  521. vec3.normalize(tmpvec3, tmpvec3);
  522. setAxisAngle(out, tmpvec3, Math.PI);
  523. return out;
  524. } else if (dot > 0.999999) {
  525. out[0] = 0;
  526. out[1] = 0;
  527. out[2] = 0;
  528. out[3] = 1;
  529. return out;
  530. } else {
  531. vec3.cross(tmpvec3, a, b);
  532. out[0] = tmpvec3[0];
  533. out[1] = tmpvec3[1];
  534. out[2] = tmpvec3[2];
  535. out[3] = 1 + dot;
  536. return normalize(out, out);
  537. }
  538. };
  539. })();
  540. /**
  541. * Performs a spherical linear interpolation with two control points
  542. *
  543. * @param {quat} out the receiving quaternion
  544. * @param {quat} a the first operand
  545. * @param {quat} b the second operand
  546. * @param {quat} c the third operand
  547. * @param {quat} d the fourth operand
  548. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  549. * @returns {quat} out
  550. */
  551. export const sqlerp = (function () {
  552. let temp1 = create();
  553. let temp2 = create();
  554. return function (out, a, b, c, d, t) {
  555. slerp(temp1, a, d, t);
  556. slerp(temp2, b, c, t);
  557. slerp(out, temp1, temp2, 2 * t * (1 - t));
  558. return out;
  559. };
  560. }());
  561. /**
  562. * Sets the specified quaternion with values corresponding to the given
  563. * axes. Each axis is a vec3 and is expected to be unit length and
  564. * perpendicular to all other specified axes.
  565. *
  566. * @param {vec3} view the vector representing the viewing direction
  567. * @param {vec3} right the vector representing the local "right" direction
  568. * @param {vec3} up the vector representing the local "up" direction
  569. * @returns {quat} out
  570. */
  571. export const setAxes = (function() {
  572. let matr = mat3.create();
  573. return function(out, view, right, up) {
  574. matr[0] = right[0];
  575. matr[3] = right[1];
  576. matr[6] = right[2];
  577. matr[1] = up[0];
  578. matr[4] = up[1];
  579. matr[7] = up[2];
  580. matr[2] = -view[0];
  581. matr[5] = -view[1];
  582. matr[8] = -view[2];
  583. return normalize(out, fromMat3(out, matr));
  584. };
  585. })();
  586. </code></pre>
  587. </article>
  588. </section>
  589. </div>
  590. <nav>
  591. <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul>
  592. </nav>
  593. <br class="clear">
  594. <footer>
  595. Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)
  596. </footer>
  597. <script> prettyPrint(); </script>
  598. <script src="scripts/linenumber.js"> </script>
  599. </body>
  600. </html>