123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 |
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <title>JSDoc: Source: quat.js</title>
- <script src="scripts/prettify/prettify.js"> </script>
- <script src="scripts/prettify/lang-css.js"> </script>
- <!--[if lt IE 9]>
- <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
- <![endif]-->
- <link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
- <link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
- </head>
- <body>
- <div id="main">
- <h1 class="page-title">Source: quat.js</h1>
-
-
- <section>
- <article>
- <pre class="prettyprint source linenums"><code>import * as glMatrix from "./common.js"
- import * as mat3 from "./mat3.js"
- import * as vec3 from "./vec3.js"
- import * as vec4 from "./vec4.js"
- /**
- * Quaternion
- * @module quat
- */
- /**
- * Creates a new identity quat
- *
- * @returns {quat} a new quaternion
- */
- export function create() {
- let out = new glMatrix.ARRAY_TYPE(4);
- if(glMatrix.ARRAY_TYPE != Float32Array) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- }
- out[3] = 1;
- return out;
- }
- /**
- * Set a quat to the identity quaternion
- *
- * @param {quat} out the receiving quaternion
- * @returns {quat} out
- */
- export function identity(out) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- }
- /**
- * Sets a quat from the given angle and rotation axis,
- * then returns it.
- *
- * @param {quat} out the receiving quaternion
- * @param {vec3} axis the axis around which to rotate
- * @param {Number} rad the angle in radians
- * @returns {quat} out
- **/
- export function setAxisAngle(out, axis, rad) {
- rad = rad * 0.5;
- let s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
- }
- /**
- * Gets the rotation axis and angle for a given
- * quaternion. If a quaternion is created with
- * setAxisAngle, this method will return the same
- * values as providied in the original parameter list
- * OR functionally equivalent values.
- * Example: The quaternion formed by axis [0, 0, 1] and
- * angle -90 is the same as the quaternion formed by
- * [0, 0, 1] and 270. This method favors the latter.
- * @param {vec3} out_axis Vector receiving the axis of rotation
- * @param {quat} q Quaternion to be decomposed
- * @return {Number} Angle, in radians, of the rotation
- */
- export function getAxisAngle(out_axis, q) {
- let rad = Math.acos(q[3]) * 2.0;
- let s = Math.sin(rad / 2.0);
- if (s > glMatrix.EPSILON) {
- out_axis[0] = q[0] / s;
- out_axis[1] = q[1] / s;
- out_axis[2] = q[2] / s;
- } else {
- // If s is zero, return any axis (no rotation - axis does not matter)
- out_axis[0] = 1;
- out_axis[1] = 0;
- out_axis[2] = 0;
- }
- return rad;
- }
- /**
- * Multiplies two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- */
- export function multiply(out, a, b) {
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = b[0], by = b[1], bz = b[2], bw = b[3];
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
- }
- /**
- * Rotates a quaternion by the given angle about the X axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- export function rotateX(out, a, rad) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
- }
- /**
- * Rotates a quaternion by the given angle about the Y axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- export function rotateY(out, a, rad) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let by = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
- }
- /**
- * Rotates a quaternion by the given angle about the Z axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- export function rotateZ(out, a, rad) {
- rad *= 0.5;
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bz = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
- }
- /**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate W component of
- * @returns {quat} out
- */
- export function calculateW(out, a) {
- let x = a[0], y = a[1], z = a[2];
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
- }
- /**
- * Performs a spherical linear interpolation between two quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {quat} out
- */
- export function slerp(out, a, b, t) {
- // benchmarks:
- // http://jsperf.com/quaternion-slerp-implementations
- let ax = a[0], ay = a[1], az = a[2], aw = a[3];
- let bx = b[0], by = b[1], bz = b[2], bw = b[3];
- let omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = ax * bx + ay * by + az * bz + aw * bw;
- // adjust signs (if necessary)
- if ( cosom < 0.0 ) {
- cosom = -cosom;
- bx = - bx;
- by = - by;
- bz = - bz;
- bw = - bw;
- }
- // calculate coefficients
- if ( (1.0 - cosom) > glMatrix.EPSILON ) {
- // standard case (slerp)
- omega = Math.acos(cosom);
- sinom = Math.sin(omega);
- scale0 = Math.sin((1.0 - t) * omega) / sinom;
- scale1 = Math.sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- out[0] = scale0 * ax + scale1 * bx;
- out[1] = scale0 * ay + scale1 * by;
- out[2] = scale0 * az + scale1 * bz;
- out[3] = scale0 * aw + scale1 * bw;
- return out;
- }
- /**
- * Generates a random quaternion
- *
- * @param {quat} out the receiving quaternion
- * @returns {quat} out
- */
- export function random(out) {
- // Implementation of http://planning.cs.uiuc.edu/node198.html
- // TODO: Calling random 3 times is probably not the fastest solution
- let u1 = glMatrix.RANDOM();
- let u2 = glMatrix.RANDOM();
- let u3 = glMatrix.RANDOM();
- let sqrt1MinusU1 = Math.sqrt(1 - u1);
- let sqrtU1 = Math.sqrt(u1);
- out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
- out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
- out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
- out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
- return out;
- }
- /**
- * Calculates the inverse of a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate inverse of
- * @returns {quat} out
- */
- export function invert(out, a) {
- let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- let dot = a0*a0 + a1*a1 + a2*a2 + a3*a3;
- let invDot = dot ? 1.0/dot : 0;
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
- out[0] = -a0*invDot;
- out[1] = -a1*invDot;
- out[2] = -a2*invDot;
- out[3] = a3*invDot;
- return out;
- }
- /**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate conjugate of
- * @returns {quat} out
- */
- export function conjugate(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
- }
- /**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * NOTE: The resultant quaternion is not normalized, so you should be sure
- * to renormalize the quaternion yourself where necessary.
- *
- * @param {quat} out the receiving quaternion
- * @param {mat3} m rotation matrix
- * @returns {quat} out
- * @function
- */
- export function fromMat3(out, m) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- let fTrace = m[0] + m[4] + m[8];
- let fRoot;
- if ( fTrace > 0.0 ) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5/fRoot; // 1/(4w)
- out[0] = (m[5]-m[7])*fRoot;
- out[1] = (m[6]-m[2])*fRoot;
- out[2] = (m[1]-m[3])*fRoot;
- } else {
- // |w| <= 1/2
- let i = 0;
- if ( m[4] > m[0] )
- i = 1;
- if ( m[8] > m[i*3+i] )
- i = 2;
- let j = (i+1)%3;
- let k = (i+2)%3;
- fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
- out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
- out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
- }
- return out;
- }
- /**
- * Creates a quaternion from the given euler angle x, y, z.
- *
- * @param {quat} out the receiving quaternion
- * @param {x} Angle to rotate around X axis in degrees.
- * @param {y} Angle to rotate around Y axis in degrees.
- * @param {z} Angle to rotate around Z axis in degrees.
- * @returns {quat} out
- * @function
- */
- export function fromEuler(out, x, y, z) {
- let halfToRad = 0.5 * Math.PI / 180.0;
- x *= halfToRad;
- y *= halfToRad;
- z *= halfToRad;
- let sx = Math.sin(x);
- let cx = Math.cos(x);
- let sy = Math.sin(y);
- let cy = Math.cos(y);
- let sz = Math.sin(z);
- let cz = Math.cos(z);
- out[0] = sx * cy * cz - cx * sy * sz;
- out[1] = cx * sy * cz + sx * cy * sz;
- out[2] = cx * cy * sz - sx * sy * cz;
- out[3] = cx * cy * cz + sx * sy * sz;
- return out;
- }
- /**
- * Returns a string representation of a quatenion
- *
- * @param {quat} a vector to represent as a string
- * @returns {String} string representation of the vector
- */
- export function str(a) {
- return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- }
- /**
- * Creates a new quat initialized with values from an existing quaternion
- *
- * @param {quat} a quaternion to clone
- * @returns {quat} a new quaternion
- * @function
- */
- export const clone = vec4.clone;
- /**
- * Creates a new quat initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} a new quaternion
- * @function
- */
- export const fromValues = vec4.fromValues;
- /**
- * Copy the values from one quat to another
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the source quaternion
- * @returns {quat} out
- * @function
- */
- export const copy = vec4.copy;
- /**
- * Set the components of a quat to the given values
- *
- * @param {quat} out the receiving quaternion
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} out
- * @function
- */
- export const set = vec4.set;
- /**
- * Adds two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- * @function
- */
- export const add = vec4.add;
- /**
- * Alias for {@link quat.multiply}
- * @function
- */
- export const mul = multiply;
- /**
- * Scales a quat by a scalar number
- *
- * @param {quat} out the receiving vector
- * @param {quat} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {quat} out
- * @function
- */
- export const scale = vec4.scale;
- /**
- * Calculates the dot product of two quat's
- *
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {Number} dot product of a and b
- * @function
- */
- export const dot = vec4.dot;
- /**
- * Performs a linear interpolation between two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {quat} out
- * @function
- */
- export const lerp = vec4.lerp;
- /**
- * Calculates the length of a quat
- *
- * @param {quat} a vector to calculate length of
- * @returns {Number} length of a
- */
- export const length = vec4.length;
- /**
- * Alias for {@link quat.length}
- * @function
- */
- export const len = length;
- /**
- * Calculates the squared length of a quat
- *
- * @param {quat} a vector to calculate squared length of
- * @returns {Number} squared length of a
- * @function
- */
- export const squaredLength = vec4.squaredLength;
- /**
- * Alias for {@link quat.squaredLength}
- * @function
- */
- export const sqrLen = squaredLength;
- /**
- * Normalize a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quaternion to normalize
- * @returns {quat} out
- * @function
- */
- export const normalize = vec4.normalize;
- /**
- * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
- *
- * @param {quat} a The first quaternion.
- * @param {quat} b The second quaternion.
- * @returns {Boolean} True if the vectors are equal, false otherwise.
- */
- export const exactEquals = vec4.exactEquals;
- /**
- * Returns whether or not the quaternions have approximately the same elements in the same position.
- *
- * @param {quat} a The first vector.
- * @param {quat} b The second vector.
- * @returns {Boolean} True if the vectors are equal, false otherwise.
- */
- export const equals = vec4.equals;
- /**
- * Sets a quaternion to represent the shortest rotation from one
- * vector to another.
- *
- * Both vectors are assumed to be unit length.
- *
- * @param {quat} out the receiving quaternion.
- * @param {vec3} a the initial vector
- * @param {vec3} b the destination vector
- * @returns {quat} out
- */
- export const rotationTo = (function() {
- let tmpvec3 = vec3.create();
- let xUnitVec3 = vec3.fromValues(1,0,0);
- let yUnitVec3 = vec3.fromValues(0,1,0);
- return function(out, a, b) {
- let dot = vec3.dot(a, b);
- if (dot < -0.999999) {
- vec3.cross(tmpvec3, xUnitVec3, a);
- if (vec3.len(tmpvec3) < 0.000001)
- vec3.cross(tmpvec3, yUnitVec3, a);
- vec3.normalize(tmpvec3, tmpvec3);
- setAxisAngle(out, tmpvec3, Math.PI);
- return out;
- } else if (dot > 0.999999) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- } else {
- vec3.cross(tmpvec3, a, b);
- out[0] = tmpvec3[0];
- out[1] = tmpvec3[1];
- out[2] = tmpvec3[2];
- out[3] = 1 + dot;
- return normalize(out, out);
- }
- };
- })();
- /**
- * Performs a spherical linear interpolation with two control points
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {quat} c the third operand
- * @param {quat} d the fourth operand
- * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
- * @returns {quat} out
- */
- export const sqlerp = (function () {
- let temp1 = create();
- let temp2 = create();
- return function (out, a, b, c, d, t) {
- slerp(temp1, a, d, t);
- slerp(temp2, b, c, t);
- slerp(out, temp1, temp2, 2 * t * (1 - t));
- return out;
- };
- }());
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- *
- * @param {vec3} view the vector representing the viewing direction
- * @param {vec3} right the vector representing the local "right" direction
- * @param {vec3} up the vector representing the local "up" direction
- * @returns {quat} out
- */
- export const setAxes = (function() {
- let matr = mat3.create();
- return function(out, view, right, up) {
- matr[0] = right[0];
- matr[3] = right[1];
- matr[6] = right[2];
- matr[1] = up[0];
- matr[4] = up[1];
- matr[7] = up[2];
- matr[2] = -view[0];
- matr[5] = -view[1];
- matr[8] = -view[2];
- return normalize(out, fromMat3(out, matr));
- };
- })();
- </code></pre>
- </article>
- </section>
- </div>
- <nav>
- <h2><a href="index.html">Home</a></h2><h3>Modules</h3><ul><li><a href="module-glMatrix.html">glMatrix</a></li><li><a href="module-mat2.html">mat2</a></li><li><a href="module-mat2d.html">mat2d</a></li><li><a href="module-mat3.html">mat3</a></li><li><a href="module-mat4.html">mat4</a></li><li><a href="module-quat.html">quat</a></li><li><a href="module-quat2.html">quat2</a></li><li><a href="module-vec2.html">vec2</a></li><li><a href="module-vec3.html">vec3</a></li><li><a href="module-vec4.html">vec4</a></li></ul>
- </nav>
- <br class="clear">
- <footer>
- Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.5.5</a> on Fri Jul 13 2018 11:51:33 GMT+0200 (W. Europe Daylight Time)
- </footer>
- <script> prettyPrint(); </script>
- <script src="scripts/linenumber.js"> </script>
- </body>
- </html>
|